Design of SFRC members aided by a multiscale model: Part I – Predicting the post-cracking parameters

•3-PBT are experimentally and numerically analyzed by a multiscale model for SFRC.•Mesh and nonlinear convergence studies are performed.•Fibers outside the fracture plane have almost no influence on numerical response.•The numerical model was able to consider the fiber content and distribution effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composite structures 2020-06, Vol.241, p.112078, Article 112078
Hauptverfasser: Trindade, Yasmin T., Bitencourt Jr, Luís A.G., Monte, Renata, de Figueiredo, Antonio D., Manzoli, Osvaldo L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112078
container_title Composite structures
container_volume 241
creator Trindade, Yasmin T.
Bitencourt Jr, Luís A.G.
Monte, Renata
de Figueiredo, Antonio D.
Manzoli, Osvaldo L.
description •3-PBT are experimentally and numerically analyzed by a multiscale model for SFRC.•Mesh and nonlinear convergence studies are performed.•Fibers outside the fracture plane have almost no influence on numerical response.•The numerical model was able to consider the fiber content and distribution effects.•Post-cracking parameters based on numerical and experimental responses were estimated. The use of steel fiber reinforced concrete (SFRC) is directly related to its post-cracking behavior in tension. The flexural three-point-bending test (3-PBT) according to EN 14651 is among the most recommended tests to evaluate the post-cracking parameters for application of SFRC as structural material. However, due to the intrinsic variability of the mechanical properties of this composite, its characterization using exclusively experimental tests would be very expensive and time-consuming. The present Part I of this two-part study aims to investigate the applicability of a recently proposed numerical model to obtain the post-cracking parameters of SFRC. A series of 3-PBT was experimentally performed for three different fiber contents: 15kg/m3, 30kg/m3 and 45kg/m3. These tests are simulated to study the main factors that may influence the numerical responses such as: mesh refinement; constitutive integration scheme; fiber distributions; fibers/concrete interface parameters and mesoscale vs. multiscale analysis. The results show that this strategy is able to predict the post-cracking parameters and can be applied as an aid tool, extrapolating the experimental results for better understanding the material responses. The influence of experimental and numerical post-cracking parameters on the design of beams according to fib Model Code 2010 is discussed in the accompanying Part II.
doi_str_mv 10.1016/j.compstruct.2020.112078
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000522793200019CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822319325334</els_id><sourcerecordid>S0263822319325334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-9d19e06c9945be8476f8d5275fbe9390df4a3422ecc4861e8cd7b90d3634e4063</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMoWC_vkL1MzWUuiTsdrQqC4mU9ZJIzNbUzKUmquPMdfEOfxJSKXerqHH7-73D4EMKUjCmh5fFsrF2_CNEvdRwzwlJMGanEFhpRUcmMElFsoxFhJc8EY3wX7YUwI4SInNIR6s4h2OmAXYcfJvc17qFvwQesrAGD23escL-cRxu0mgPunYH5Cb5TPuJr_PXxie88GKujHaY4PgNeuBAz7ZV-WSUL5VUPMd07QDudmgc4_Jn76Gly8VhfZTe3l9f16U2mORUxk4ZKIKWWMi9aEHlVdsIUrCq6FiSXxHS54jljoHUuSgpCm6pNMS95Djkp-T4S67vauxA8dM3C217594aSZuWrmTUbX83KV7P2tUHfoHVd0BYGDb94ElYwVknO0kZlbaOK1g21Ww4xoUf_R1P7bN2GJOLVgm9-CGM9pKeMs39_-w2dAJsH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of SFRC members aided by a multiscale model: Part I – Predicting the post-cracking parameters</title><source>Elsevier ScienceDirect Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Trindade, Yasmin T. ; Bitencourt Jr, Luís A.G. ; Monte, Renata ; de Figueiredo, Antonio D. ; Manzoli, Osvaldo L.</creator><creatorcontrib>Trindade, Yasmin T. ; Bitencourt Jr, Luís A.G. ; Monte, Renata ; de Figueiredo, Antonio D. ; Manzoli, Osvaldo L.</creatorcontrib><description>•3-PBT are experimentally and numerically analyzed by a multiscale model for SFRC.•Mesh and nonlinear convergence studies are performed.•Fibers outside the fracture plane have almost no influence on numerical response.•The numerical model was able to consider the fiber content and distribution effects.•Post-cracking parameters based on numerical and experimental responses were estimated. The use of steel fiber reinforced concrete (SFRC) is directly related to its post-cracking behavior in tension. The flexural three-point-bending test (3-PBT) according to EN 14651 is among the most recommended tests to evaluate the post-cracking parameters for application of SFRC as structural material. However, due to the intrinsic variability of the mechanical properties of this composite, its characterization using exclusively experimental tests would be very expensive and time-consuming. The present Part I of this two-part study aims to investigate the applicability of a recently proposed numerical model to obtain the post-cracking parameters of SFRC. A series of 3-PBT was experimentally performed for three different fiber contents: 15kg/m3, 30kg/m3 and 45kg/m3. These tests are simulated to study the main factors that may influence the numerical responses such as: mesh refinement; constitutive integration scheme; fiber distributions; fibers/concrete interface parameters and mesoscale vs. multiscale analysis. The results show that this strategy is able to predict the post-cracking parameters and can be applied as an aid tool, extrapolating the experimental results for better understanding the material responses. The influence of experimental and numerical post-cracking parameters on the design of beams according to fib Model Code 2010 is discussed in the accompanying Part II.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2020.112078</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>EN 14651 ; Experimental tests ; Materials Science ; Materials Science, Composites ; Mechanics ; Numerical modeling ; Post-cracking behavior ; Science &amp; Technology ; SFRC ; Technology ; Three-point bending test</subject><ispartof>Composite structures, 2020-06, Vol.241, p.112078, Article 112078</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000522793200019</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c318t-9d19e06c9945be8476f8d5275fbe9390df4a3422ecc4861e8cd7b90d3634e4063</citedby><cites>FETCH-LOGICAL-c318t-9d19e06c9945be8476f8d5275fbe9390df4a3422ecc4861e8cd7b90d3634e4063</cites><orcidid>0000-0001-9004-7985 ; 0000-0003-4658-3355 ; 0000-0003-1396-3319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruct.2020.112078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28253,46000</link.rule.ids></links><search><creatorcontrib>Trindade, Yasmin T.</creatorcontrib><creatorcontrib>Bitencourt Jr, Luís A.G.</creatorcontrib><creatorcontrib>Monte, Renata</creatorcontrib><creatorcontrib>de Figueiredo, Antonio D.</creatorcontrib><creatorcontrib>Manzoli, Osvaldo L.</creatorcontrib><title>Design of SFRC members aided by a multiscale model: Part I – Predicting the post-cracking parameters</title><title>Composite structures</title><addtitle>COMPOS STRUCT</addtitle><description>•3-PBT are experimentally and numerically analyzed by a multiscale model for SFRC.•Mesh and nonlinear convergence studies are performed.•Fibers outside the fracture plane have almost no influence on numerical response.•The numerical model was able to consider the fiber content and distribution effects.•Post-cracking parameters based on numerical and experimental responses were estimated. The use of steel fiber reinforced concrete (SFRC) is directly related to its post-cracking behavior in tension. The flexural three-point-bending test (3-PBT) according to EN 14651 is among the most recommended tests to evaluate the post-cracking parameters for application of SFRC as structural material. However, due to the intrinsic variability of the mechanical properties of this composite, its characterization using exclusively experimental tests would be very expensive and time-consuming. The present Part I of this two-part study aims to investigate the applicability of a recently proposed numerical model to obtain the post-cracking parameters of SFRC. A series of 3-PBT was experimentally performed for three different fiber contents: 15kg/m3, 30kg/m3 and 45kg/m3. These tests are simulated to study the main factors that may influence the numerical responses such as: mesh refinement; constitutive integration scheme; fiber distributions; fibers/concrete interface parameters and mesoscale vs. multiscale analysis. The results show that this strategy is able to predict the post-cracking parameters and can be applied as an aid tool, extrapolating the experimental results for better understanding the material responses. The influence of experimental and numerical post-cracking parameters on the design of beams according to fib Model Code 2010 is discussed in the accompanying Part II.</description><subject>EN 14651</subject><subject>Experimental tests</subject><subject>Materials Science</subject><subject>Materials Science, Composites</subject><subject>Mechanics</subject><subject>Numerical modeling</subject><subject>Post-cracking behavior</subject><subject>Science &amp; Technology</subject><subject>SFRC</subject><subject>Technology</subject><subject>Three-point bending test</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMtKAzEUhoMoWC_vkL1MzWUuiTsdrQqC4mU9ZJIzNbUzKUmquPMdfEOfxJSKXerqHH7-73D4EMKUjCmh5fFsrF2_CNEvdRwzwlJMGanEFhpRUcmMElFsoxFhJc8EY3wX7YUwI4SInNIR6s4h2OmAXYcfJvc17qFvwQesrAGD23escL-cRxu0mgPunYH5Cb5TPuJr_PXxie88GKujHaY4PgNeuBAz7ZV-WSUL5VUPMd07QDudmgc4_Jn76Gly8VhfZTe3l9f16U2mORUxk4ZKIKWWMi9aEHlVdsIUrCq6FiSXxHS54jljoHUuSgpCm6pNMS95Djkp-T4S67vauxA8dM3C217594aSZuWrmTUbX83KV7P2tUHfoHVd0BYGDb94ElYwVknO0kZlbaOK1g21Ww4xoUf_R1P7bN2GJOLVgm9-CGM9pKeMs39_-w2dAJsH</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Trindade, Yasmin T.</creator><creator>Bitencourt Jr, Luís A.G.</creator><creator>Monte, Renata</creator><creator>de Figueiredo, Antonio D.</creator><creator>Manzoli, Osvaldo L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9004-7985</orcidid><orcidid>https://orcid.org/0000-0003-4658-3355</orcidid><orcidid>https://orcid.org/0000-0003-1396-3319</orcidid></search><sort><creationdate>20200601</creationdate><title>Design of SFRC members aided by a multiscale model: Part I – Predicting the post-cracking parameters</title><author>Trindade, Yasmin T. ; Bitencourt Jr, Luís A.G. ; Monte, Renata ; de Figueiredo, Antonio D. ; Manzoli, Osvaldo L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-9d19e06c9945be8476f8d5275fbe9390df4a3422ecc4861e8cd7b90d3634e4063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>EN 14651</topic><topic>Experimental tests</topic><topic>Materials Science</topic><topic>Materials Science, Composites</topic><topic>Mechanics</topic><topic>Numerical modeling</topic><topic>Post-cracking behavior</topic><topic>Science &amp; Technology</topic><topic>SFRC</topic><topic>Technology</topic><topic>Three-point bending test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trindade, Yasmin T.</creatorcontrib><creatorcontrib>Bitencourt Jr, Luís A.G.</creatorcontrib><creatorcontrib>Monte, Renata</creatorcontrib><creatorcontrib>de Figueiredo, Antonio D.</creatorcontrib><creatorcontrib>Manzoli, Osvaldo L.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trindade, Yasmin T.</au><au>Bitencourt Jr, Luís A.G.</au><au>Monte, Renata</au><au>de Figueiredo, Antonio D.</au><au>Manzoli, Osvaldo L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of SFRC members aided by a multiscale model: Part I – Predicting the post-cracking parameters</atitle><jtitle>Composite structures</jtitle><stitle>COMPOS STRUCT</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>241</volume><spage>112078</spage><pages>112078-</pages><artnum>112078</artnum><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>•3-PBT are experimentally and numerically analyzed by a multiscale model for SFRC.•Mesh and nonlinear convergence studies are performed.•Fibers outside the fracture plane have almost no influence on numerical response.•The numerical model was able to consider the fiber content and distribution effects.•Post-cracking parameters based on numerical and experimental responses were estimated. The use of steel fiber reinforced concrete (SFRC) is directly related to its post-cracking behavior in tension. The flexural three-point-bending test (3-PBT) according to EN 14651 is among the most recommended tests to evaluate the post-cracking parameters for application of SFRC as structural material. However, due to the intrinsic variability of the mechanical properties of this composite, its characterization using exclusively experimental tests would be very expensive and time-consuming. The present Part I of this two-part study aims to investigate the applicability of a recently proposed numerical model to obtain the post-cracking parameters of SFRC. A series of 3-PBT was experimentally performed for three different fiber contents: 15kg/m3, 30kg/m3 and 45kg/m3. These tests are simulated to study the main factors that may influence the numerical responses such as: mesh refinement; constitutive integration scheme; fiber distributions; fibers/concrete interface parameters and mesoscale vs. multiscale analysis. The results show that this strategy is able to predict the post-cracking parameters and can be applied as an aid tool, extrapolating the experimental results for better understanding the material responses. The influence of experimental and numerical post-cracking parameters on the design of beams according to fib Model Code 2010 is discussed in the accompanying Part II.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2020.112078</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9004-7985</orcidid><orcidid>https://orcid.org/0000-0003-4658-3355</orcidid><orcidid>https://orcid.org/0000-0003-1396-3319</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0263-8223
ispartof Composite structures, 2020-06, Vol.241, p.112078, Article 112078
issn 0263-8223
1879-1085
language eng
recordid cdi_webofscience_primary_000522793200019CitationCount
source Elsevier ScienceDirect Journals Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects EN 14651
Experimental tests
Materials Science
Materials Science, Composites
Mechanics
Numerical modeling
Post-cracking behavior
Science & Technology
SFRC
Technology
Three-point bending test
title Design of SFRC members aided by a multiscale model: Part I – Predicting the post-cracking parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T04%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20SFRC%20members%20aided%20by%20a%20multiscale%20model:%20Part%20I%20%E2%80%93%20Predicting%20the%20post-cracking%20parameters&rft.jtitle=Composite%20structures&rft.au=Trindade,%20Yasmin%20T.&rft.date=2020-06-01&rft.volume=241&rft.spage=112078&rft.pages=112078-&rft.artnum=112078&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2020.112078&rft_dat=%3Celsevier_webof%3ES0263822319325334%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0263822319325334&rfr_iscdi=true