Neoadjuvant PD-1 Immune Checkpoint Blockade Reverses Functional Immunodominance among Tumor Antigen-Specific T Cells

Purpose: Surgical resection of primary tumor with regional lymphadenectomy remains the treatment of choice for patients with advanced human papillomavirus-negative head and neck squamous cell carcinoma. However, even when pathologic disease-free margins can be achieved, locoregional and/or distant d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2020-02, Vol.26 (3), p.679-689
Hauptverfasser: Friedman, Jay, Moore, Ellen C., Zolkind, Paul, Robbins, Yvette, Clavijo, Paul E., Sun, Lilian, Greene, Sarah, Morisada, Megan V., Mydlarz, Wojciech K., Schmitt, Nicole, Hodge, James W., Schreiber, Hans, Van Waes, Carter, Uppaluri, Ravindra, Allen, Clint
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 689
container_issue 3
container_start_page 679
container_title Clinical cancer research
container_volume 26
creator Friedman, Jay
Moore, Ellen C.
Zolkind, Paul
Robbins, Yvette
Clavijo, Paul E.
Sun, Lilian
Greene, Sarah
Morisada, Megan V.
Mydlarz, Wojciech K.
Schmitt, Nicole
Hodge, James W.
Schreiber, Hans
Van Waes, Carter
Uppaluri, Ravindra
Allen, Clint
description Purpose: Surgical resection of primary tumor with regional lymphadenectomy remains the treatment of choice for patients with advanced human papillomavirus-negative head and neck squamous cell carcinoma. However, even when pathologic disease-free margins can be achieved, locoregional and/or distant disease relapse remains high. Perioperative immunotherapy may improve outcomes, but mechanistic data supporting the use of neoadjuvant or adjuvant treatment clinically are sparse. Experimental Design: Two syngeneic models of oral cavity carcinoma with defined T-cell antigens were treated with programmed death receptor 1 (PD-1) mAb before or after surgical resection of primary tumors, and antigen-specific T-cell responses were explored with functional and in vivo challenge assays. Results: We demonstrated that functional immunodominance developed among T cells targeting multiple independent tumor antigens. T cells specific for subdominant antigens expressed greater levels of PD-1. Neoadjuvant, but not adjuvant, PD-1 immune checkpoint blockade broke immunodominance and induced T-cell responses to dominant and subdominant antigens. Using tumors lacking the immunodominant antigen as a model of antigen escape, neoadjuvant PD-1 immune checkpoint blockade induced effector T-cell immunity against tumor cells lacking immunodominant but retaining subdominant antigen. When combined with complete surgical excision, neoadjuvant PD-1 immune checkpoint blockade led to formation of immunologic memory capable of preventing engraftment of tumors lacking the immunodominant but retaining subdominant antigen. Conclusions: Together, these results implicate PD-1 expression by T cells in the mechanism of functional immunodominance among independent T-cell clones within a progressing tumor and support the use of neoadjuvant PD-1 immune checkpoint blockade in patients with surgically resectable carcinomas.
doi_str_mv 10.1158/1078-0432.CCR-19-2209
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000522788900019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2308521413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-4d1991b09bc7f25c73871091618c3eb67c8fa87c0f5aacf826febcfc136b7433</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiNERUvhEUA-IqEUjx3HzgWpBAqVKkBl75bjHW_dJvY2Thbx9jjadgW3njyyv_ltz1cUb4CeAQj1AahUJa04O2vb6xKakjHaPCtOQAhZclaL57l-ZI6LlyndUgoV0OpFccyhrgQX7KSYvmM069t5Z8JEfn4ugVwOwxyQtDdo77bR5-1PfbR3Zo3kGnc4JkzkYg528jGYfo_HdRx8MMEiMUMMG7KahziS8zD5DYby1xatd96SFWmx79Or4siZPuHrh_W0WF18WbXfyqsfXy_b86vSVgBTWa2haaCjTWelY8JKriTQBmpQlmNXS6ucUdJSJ4yxTrHaYWedBV53suL8tPi4j93O3YBri2EaTa-3ox_M-EdH4_X_J8Hf6E3caUlpnuYS8O4hYIz3M6ZJDz7Z_AMTMM5JM06VYHmoCyr2qB1jSiO6wzVA9SJMLzL0IkNnYRoavQjLfW__feOh69FQBt7vgd_YRZesxzzlA0YpFYxJpZpcwRKnnk63fjKLxTbOYeJ_AT01tIk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308521413</pqid></control><display><type>article</type><title>Neoadjuvant PD-1 Immune Checkpoint Blockade Reverses Functional Immunodominance among Tumor Antigen-Specific T Cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>American Association for Cancer Research</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Friedman, Jay ; Moore, Ellen C. ; Zolkind, Paul ; Robbins, Yvette ; Clavijo, Paul E. ; Sun, Lilian ; Greene, Sarah ; Morisada, Megan V. ; Mydlarz, Wojciech K. ; Schmitt, Nicole ; Hodge, James W. ; Schreiber, Hans ; Van Waes, Carter ; Uppaluri, Ravindra ; Allen, Clint</creator><creatorcontrib>Friedman, Jay ; Moore, Ellen C. ; Zolkind, Paul ; Robbins, Yvette ; Clavijo, Paul E. ; Sun, Lilian ; Greene, Sarah ; Morisada, Megan V. ; Mydlarz, Wojciech K. ; Schmitt, Nicole ; Hodge, James W. ; Schreiber, Hans ; Van Waes, Carter ; Uppaluri, Ravindra ; Allen, Clint</creatorcontrib><description>Purpose: Surgical resection of primary tumor with regional lymphadenectomy remains the treatment of choice for patients with advanced human papillomavirus-negative head and neck squamous cell carcinoma. However, even when pathologic disease-free margins can be achieved, locoregional and/or distant disease relapse remains high. Perioperative immunotherapy may improve outcomes, but mechanistic data supporting the use of neoadjuvant or adjuvant treatment clinically are sparse. Experimental Design: Two syngeneic models of oral cavity carcinoma with defined T-cell antigens were treated with programmed death receptor 1 (PD-1) mAb before or after surgical resection of primary tumors, and antigen-specific T-cell responses were explored with functional and in vivo challenge assays. Results: We demonstrated that functional immunodominance developed among T cells targeting multiple independent tumor antigens. T cells specific for subdominant antigens expressed greater levels of PD-1. Neoadjuvant, but not adjuvant, PD-1 immune checkpoint blockade broke immunodominance and induced T-cell responses to dominant and subdominant antigens. Using tumors lacking the immunodominant antigen as a model of antigen escape, neoadjuvant PD-1 immune checkpoint blockade induced effector T-cell immunity against tumor cells lacking immunodominant but retaining subdominant antigen. When combined with complete surgical excision, neoadjuvant PD-1 immune checkpoint blockade led to formation of immunologic memory capable of preventing engraftment of tumors lacking the immunodominant but retaining subdominant antigen. Conclusions: Together, these results implicate PD-1 expression by T cells in the mechanism of functional immunodominance among independent T-cell clones within a progressing tumor and support the use of neoadjuvant PD-1 immune checkpoint blockade in patients with surgically resectable carcinomas.</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.CCR-19-2209</identifier><identifier>PMID: 31645352</identifier><language>eng</language><publisher>PHILADELPHIA: Amer Assoc Cancer Research</publisher><subject>Animals ; Antibodies, Monoclonal - pharmacology ; Cell Line, Tumor ; Humans ; Immunodominant Epitopes - immunology ; Immunotherapy - methods ; Life Sciences &amp; Biomedicine ; Mice ; Mice, Inbred C57BL ; Mouth Neoplasms - drug therapy ; Mouth Neoplasms - immunology ; Mouth Neoplasms - pathology ; Neoadjuvant Therapy - methods ; Oncology ; Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors ; Programmed Cell Death 1 Receptor - immunology ; Science &amp; Technology ; T-Lymphocytes - immunology ; Tumor Microenvironment - immunology ; Xenograft Model Antitumor Assays</subject><ispartof>Clinical cancer research, 2020-02, Vol.26 (3), p.679-689</ispartof><rights>2019 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>47</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000522788900019</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c411t-4d1991b09bc7f25c73871091618c3eb67c8fa87c0f5aacf826febcfc136b7433</citedby><cites>FETCH-LOGICAL-c411t-4d1991b09bc7f25c73871091618c3eb67c8fa87c0f5aacf826febcfc136b7433</cites><orcidid>0000-0001-5223-3525 ; 0000-0002-9475-1686 ; 0000-0001-6586-5804 ; 0000-0002-7917-2942 ; 0000-0001-5282-3154 ; 0000-0001-5957-7961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,3358,27931,27932,28255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31645352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Friedman, Jay</creatorcontrib><creatorcontrib>Moore, Ellen C.</creatorcontrib><creatorcontrib>Zolkind, Paul</creatorcontrib><creatorcontrib>Robbins, Yvette</creatorcontrib><creatorcontrib>Clavijo, Paul E.</creatorcontrib><creatorcontrib>Sun, Lilian</creatorcontrib><creatorcontrib>Greene, Sarah</creatorcontrib><creatorcontrib>Morisada, Megan V.</creatorcontrib><creatorcontrib>Mydlarz, Wojciech K.</creatorcontrib><creatorcontrib>Schmitt, Nicole</creatorcontrib><creatorcontrib>Hodge, James W.</creatorcontrib><creatorcontrib>Schreiber, Hans</creatorcontrib><creatorcontrib>Van Waes, Carter</creatorcontrib><creatorcontrib>Uppaluri, Ravindra</creatorcontrib><creatorcontrib>Allen, Clint</creatorcontrib><title>Neoadjuvant PD-1 Immune Checkpoint Blockade Reverses Functional Immunodominance among Tumor Antigen-Specific T Cells</title><title>Clinical cancer research</title><addtitle>CLIN CANCER RES</addtitle><addtitle>Clin Cancer Res</addtitle><description>Purpose: Surgical resection of primary tumor with regional lymphadenectomy remains the treatment of choice for patients with advanced human papillomavirus-negative head and neck squamous cell carcinoma. However, even when pathologic disease-free margins can be achieved, locoregional and/or distant disease relapse remains high. Perioperative immunotherapy may improve outcomes, but mechanistic data supporting the use of neoadjuvant or adjuvant treatment clinically are sparse. Experimental Design: Two syngeneic models of oral cavity carcinoma with defined T-cell antigens were treated with programmed death receptor 1 (PD-1) mAb before or after surgical resection of primary tumors, and antigen-specific T-cell responses were explored with functional and in vivo challenge assays. Results: We demonstrated that functional immunodominance developed among T cells targeting multiple independent tumor antigens. T cells specific for subdominant antigens expressed greater levels of PD-1. Neoadjuvant, but not adjuvant, PD-1 immune checkpoint blockade broke immunodominance and induced T-cell responses to dominant and subdominant antigens. Using tumors lacking the immunodominant antigen as a model of antigen escape, neoadjuvant PD-1 immune checkpoint blockade induced effector T-cell immunity against tumor cells lacking immunodominant but retaining subdominant antigen. When combined with complete surgical excision, neoadjuvant PD-1 immune checkpoint blockade led to formation of immunologic memory capable of preventing engraftment of tumors lacking the immunodominant but retaining subdominant antigen. Conclusions: Together, these results implicate PD-1 expression by T cells in the mechanism of functional immunodominance among independent T-cell clones within a progressing tumor and support the use of neoadjuvant PD-1 immune checkpoint blockade in patients with surgically resectable carcinomas.</description><subject>Animals</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Humans</subject><subject>Immunodominant Epitopes - immunology</subject><subject>Immunotherapy - methods</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mouth Neoplasms - drug therapy</subject><subject>Mouth Neoplasms - immunology</subject><subject>Mouth Neoplasms - pathology</subject><subject>Neoadjuvant Therapy - methods</subject><subject>Oncology</subject><subject>Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors</subject><subject>Programmed Cell Death 1 Receptor - immunology</subject><subject>Science &amp; Technology</subject><subject>T-Lymphocytes - immunology</subject><subject>Tumor Microenvironment - immunology</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhiNERUvhEUA-IqEUjx3HzgWpBAqVKkBl75bjHW_dJvY2Thbx9jjadgW3njyyv_ltz1cUb4CeAQj1AahUJa04O2vb6xKakjHaPCtOQAhZclaL57l-ZI6LlyndUgoV0OpFccyhrgQX7KSYvmM069t5Z8JEfn4ugVwOwxyQtDdo77bR5-1PfbR3Zo3kGnc4JkzkYg528jGYfo_HdRx8MMEiMUMMG7KahziS8zD5DYby1xatd96SFWmx79Or4siZPuHrh_W0WF18WbXfyqsfXy_b86vSVgBTWa2haaCjTWelY8JKriTQBmpQlmNXS6ucUdJSJ4yxTrHaYWedBV53suL8tPi4j93O3YBri2EaTa-3ox_M-EdH4_X_J8Hf6E3caUlpnuYS8O4hYIz3M6ZJDz7Z_AMTMM5JM06VYHmoCyr2qB1jSiO6wzVA9SJMLzL0IkNnYRoavQjLfW__feOh69FQBt7vgd_YRZesxzzlA0YpFYxJpZpcwRKnnk63fjKLxTbOYeJ_AT01tIk</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Friedman, Jay</creator><creator>Moore, Ellen C.</creator><creator>Zolkind, Paul</creator><creator>Robbins, Yvette</creator><creator>Clavijo, Paul E.</creator><creator>Sun, Lilian</creator><creator>Greene, Sarah</creator><creator>Morisada, Megan V.</creator><creator>Mydlarz, Wojciech K.</creator><creator>Schmitt, Nicole</creator><creator>Hodge, James W.</creator><creator>Schreiber, Hans</creator><creator>Van Waes, Carter</creator><creator>Uppaluri, Ravindra</creator><creator>Allen, Clint</creator><general>Amer Assoc Cancer Research</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5223-3525</orcidid><orcidid>https://orcid.org/0000-0002-9475-1686</orcidid><orcidid>https://orcid.org/0000-0001-6586-5804</orcidid><orcidid>https://orcid.org/0000-0002-7917-2942</orcidid><orcidid>https://orcid.org/0000-0001-5282-3154</orcidid><orcidid>https://orcid.org/0000-0001-5957-7961</orcidid></search><sort><creationdate>20200201</creationdate><title>Neoadjuvant PD-1 Immune Checkpoint Blockade Reverses Functional Immunodominance among Tumor Antigen-Specific T Cells</title><author>Friedman, Jay ; Moore, Ellen C. ; Zolkind, Paul ; Robbins, Yvette ; Clavijo, Paul E. ; Sun, Lilian ; Greene, Sarah ; Morisada, Megan V. ; Mydlarz, Wojciech K. ; Schmitt, Nicole ; Hodge, James W. ; Schreiber, Hans ; Van Waes, Carter ; Uppaluri, Ravindra ; Allen, Clint</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-4d1991b09bc7f25c73871091618c3eb67c8fa87c0f5aacf826febcfc136b7433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Humans</topic><topic>Immunodominant Epitopes - immunology</topic><topic>Immunotherapy - methods</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mouth Neoplasms - drug therapy</topic><topic>Mouth Neoplasms - immunology</topic><topic>Mouth Neoplasms - pathology</topic><topic>Neoadjuvant Therapy - methods</topic><topic>Oncology</topic><topic>Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors</topic><topic>Programmed Cell Death 1 Receptor - immunology</topic><topic>Science &amp; Technology</topic><topic>T-Lymphocytes - immunology</topic><topic>Tumor Microenvironment - immunology</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedman, Jay</creatorcontrib><creatorcontrib>Moore, Ellen C.</creatorcontrib><creatorcontrib>Zolkind, Paul</creatorcontrib><creatorcontrib>Robbins, Yvette</creatorcontrib><creatorcontrib>Clavijo, Paul E.</creatorcontrib><creatorcontrib>Sun, Lilian</creatorcontrib><creatorcontrib>Greene, Sarah</creatorcontrib><creatorcontrib>Morisada, Megan V.</creatorcontrib><creatorcontrib>Mydlarz, Wojciech K.</creatorcontrib><creatorcontrib>Schmitt, Nicole</creatorcontrib><creatorcontrib>Hodge, James W.</creatorcontrib><creatorcontrib>Schreiber, Hans</creatorcontrib><creatorcontrib>Van Waes, Carter</creatorcontrib><creatorcontrib>Uppaluri, Ravindra</creatorcontrib><creatorcontrib>Allen, Clint</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedman, Jay</au><au>Moore, Ellen C.</au><au>Zolkind, Paul</au><au>Robbins, Yvette</au><au>Clavijo, Paul E.</au><au>Sun, Lilian</au><au>Greene, Sarah</au><au>Morisada, Megan V.</au><au>Mydlarz, Wojciech K.</au><au>Schmitt, Nicole</au><au>Hodge, James W.</au><au>Schreiber, Hans</au><au>Van Waes, Carter</au><au>Uppaluri, Ravindra</au><au>Allen, Clint</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neoadjuvant PD-1 Immune Checkpoint Blockade Reverses Functional Immunodominance among Tumor Antigen-Specific T Cells</atitle><jtitle>Clinical cancer research</jtitle><stitle>CLIN CANCER RES</stitle><addtitle>Clin Cancer Res</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>26</volume><issue>3</issue><spage>679</spage><epage>689</epage><pages>679-689</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><abstract>Purpose: Surgical resection of primary tumor with regional lymphadenectomy remains the treatment of choice for patients with advanced human papillomavirus-negative head and neck squamous cell carcinoma. However, even when pathologic disease-free margins can be achieved, locoregional and/or distant disease relapse remains high. Perioperative immunotherapy may improve outcomes, but mechanistic data supporting the use of neoadjuvant or adjuvant treatment clinically are sparse. Experimental Design: Two syngeneic models of oral cavity carcinoma with defined T-cell antigens were treated with programmed death receptor 1 (PD-1) mAb before or after surgical resection of primary tumors, and antigen-specific T-cell responses were explored with functional and in vivo challenge assays. Results: We demonstrated that functional immunodominance developed among T cells targeting multiple independent tumor antigens. T cells specific for subdominant antigens expressed greater levels of PD-1. Neoadjuvant, but not adjuvant, PD-1 immune checkpoint blockade broke immunodominance and induced T-cell responses to dominant and subdominant antigens. Using tumors lacking the immunodominant antigen as a model of antigen escape, neoadjuvant PD-1 immune checkpoint blockade induced effector T-cell immunity against tumor cells lacking immunodominant but retaining subdominant antigen. When combined with complete surgical excision, neoadjuvant PD-1 immune checkpoint blockade led to formation of immunologic memory capable of preventing engraftment of tumors lacking the immunodominant but retaining subdominant antigen. Conclusions: Together, these results implicate PD-1 expression by T cells in the mechanism of functional immunodominance among independent T-cell clones within a progressing tumor and support the use of neoadjuvant PD-1 immune checkpoint blockade in patients with surgically resectable carcinomas.</abstract><cop>PHILADELPHIA</cop><pub>Amer Assoc Cancer Research</pub><pmid>31645352</pmid><doi>10.1158/1078-0432.CCR-19-2209</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5223-3525</orcidid><orcidid>https://orcid.org/0000-0002-9475-1686</orcidid><orcidid>https://orcid.org/0000-0001-6586-5804</orcidid><orcidid>https://orcid.org/0000-0002-7917-2942</orcidid><orcidid>https://orcid.org/0000-0001-5282-3154</orcidid><orcidid>https://orcid.org/0000-0001-5957-7961</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-0432
ispartof Clinical cancer research, 2020-02, Vol.26 (3), p.679-689
issn 1078-0432
1557-3265
language eng
recordid cdi_webofscience_primary_000522788900019
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; American Association for Cancer Research; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Animals
Antibodies, Monoclonal - pharmacology
Cell Line, Tumor
Humans
Immunodominant Epitopes - immunology
Immunotherapy - methods
Life Sciences & Biomedicine
Mice
Mice, Inbred C57BL
Mouth Neoplasms - drug therapy
Mouth Neoplasms - immunology
Mouth Neoplasms - pathology
Neoadjuvant Therapy - methods
Oncology
Programmed Cell Death 1 Receptor - antagonists & inhibitors
Programmed Cell Death 1 Receptor - immunology
Science & Technology
T-Lymphocytes - immunology
Tumor Microenvironment - immunology
Xenograft Model Antitumor Assays
title Neoadjuvant PD-1 Immune Checkpoint Blockade Reverses Functional Immunodominance among Tumor Antigen-Specific T Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neoadjuvant%20PD-1%20Immune%20Checkpoint%20Blockade%20Reverses%20Functional%20Immunodominance%20among%20Tumor%20Antigen-Specific%20T%20Cells&rft.jtitle=Clinical%20cancer%20research&rft.au=Friedman,%20Jay&rft.date=2020-02-01&rft.volume=26&rft.issue=3&rft.spage=679&rft.epage=689&rft.pages=679-689&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.CCR-19-2209&rft_dat=%3Cproquest_webof%3E2308521413%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308521413&rft_id=info:pmid/31645352&rfr_iscdi=true