Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants

The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-01, Vol.21 (3), p.707
Hauptverfasser: Zhang, Guo-Jun, Dong, Ran, Lan, Li-Na, Li, Shu-Fen, Gao, Wu-Jun, Niu, Hong-Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 707
container_title International journal of molecular sciences
container_volume 21
creator Zhang, Guo-Jun
Dong, Ran
Lan, Li-Na
Li, Shu-Fen
Gao, Wu-Jun
Niu, Hong-Xing
description The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed.
doi_str_mv 10.3390/ijms21030707
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7037861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344275467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-b866eccd3633269ff8a1865a053a3c73408626b7bf345fdb1af31643af8245083</originalsourceid><addsrcrecordid>eNpdkc1LXDEUxUNpqVa7cy2BbrrotEluXpK3KchorSAqtF11EfIyyfQN7yU2H4L_vRm0MnZ1L5wfh3M4CB1R8hmgJ1_GzZwZJUAkka_QPuWMLQgR8vXOv4fe5bwhhAHr-rdoD2gvgQrYR7-vqp2cSfgiFLdOJpSMo8fXaW2Cm6YmnF6d4GUMJY1DLQ6XiM9diLPDP0qqttTksAkrfHYXp1rGGPAY8M20NTpEb7yZsnv_dA_Qr29nP5ffF5fX5xfLk8uF5VKVxaCEcNauQAAw0XuvDFWiM6QDA1YCJ0owMcjBA-_8aqDGt-wcjFeMd0TBAfr66Htbh9mtrGthzaRv0zibdK-jGfVLJYx_9DreaUlAKkGbwccngxT_VpeLnsdst_WDizVrBpwz2XEhG_rhP3QTawqtnmYdV0L2bZNGfXqkbIo5J-efw1Cit6vp3dUafrxb4Bn-NxM8AGV7kw4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548679390</pqid></control><display><type>article</type><title>Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Zhang, Guo-Jun ; Dong, Ran ; Lan, Li-Na ; Li, Shu-Fen ; Gao, Wu-Jun ; Niu, Hong-Xing</creator><creatorcontrib>Zhang, Guo-Jun ; Dong, Ran ; Lan, Li-Na ; Li, Shu-Fen ; Gao, Wu-Jun ; Niu, Hong-Xing</creatorcontrib><description>The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21030707</identifier><identifier>PMID: 31973163</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Chloroplasts ; Chromosomes ; Deoxyribonucleic acid ; DNA ; DNA structure ; Evolution ; Flowers &amp; plants ; Genes ; Genetic diversity ; Genetic engineering ; Genomes ; Homology ; Mitochondria ; Mitochondrial DNA ; Mutation ; Non-homologous end joining ; Nucleotide sequence ; Plant mitochondria ; Review ; Statistical analysis</subject><ispartof>International journal of molecular sciences, 2020-01, Vol.21 (3), p.707</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-b866eccd3633269ff8a1865a053a3c73408626b7bf345fdb1af31643af8245083</citedby><cites>FETCH-LOGICAL-c478t-b866eccd3633269ff8a1865a053a3c73408626b7bf345fdb1af31643af8245083</cites><orcidid>0000-0001-8160-7776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037861/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037861/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31973163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Guo-Jun</creatorcontrib><creatorcontrib>Dong, Ran</creatorcontrib><creatorcontrib>Lan, Li-Na</creatorcontrib><creatorcontrib>Li, Shu-Fen</creatorcontrib><creatorcontrib>Gao, Wu-Jun</creatorcontrib><creatorcontrib>Niu, Hong-Xing</creatorcontrib><title>Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed.</description><subject>Chloroplasts</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA structure</subject><subject>Evolution</subject><subject>Flowers &amp; plants</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Homology</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Mutation</subject><subject>Non-homologous end joining</subject><subject>Nucleotide sequence</subject><subject>Plant mitochondria</subject><subject>Review</subject><subject>Statistical analysis</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1LXDEUxUNpqVa7cy2BbrrotEluXpK3KchorSAqtF11EfIyyfQN7yU2H4L_vRm0MnZ1L5wfh3M4CB1R8hmgJ1_GzZwZJUAkka_QPuWMLQgR8vXOv4fe5bwhhAHr-rdoD2gvgQrYR7-vqp2cSfgiFLdOJpSMo8fXaW2Cm6YmnF6d4GUMJY1DLQ6XiM9diLPDP0qqttTksAkrfHYXp1rGGPAY8M20NTpEb7yZsnv_dA_Qr29nP5ffF5fX5xfLk8uF5VKVxaCEcNauQAAw0XuvDFWiM6QDA1YCJ0owMcjBA-_8aqDGt-wcjFeMd0TBAfr66Htbh9mtrGthzaRv0zibdK-jGfVLJYx_9DreaUlAKkGbwccngxT_VpeLnsdst_WDizVrBpwz2XEhG_rhP3QTawqtnmYdV0L2bZNGfXqkbIo5J-efw1Cit6vp3dUafrxb4Bn-NxM8AGV7kw4</recordid><startdate>20200121</startdate><enddate>20200121</enddate><creator>Zhang, Guo-Jun</creator><creator>Dong, Ran</creator><creator>Lan, Li-Na</creator><creator>Li, Shu-Fen</creator><creator>Gao, Wu-Jun</creator><creator>Niu, Hong-Xing</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8160-7776</orcidid></search><sort><creationdate>20200121</creationdate><title>Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants</title><author>Zhang, Guo-Jun ; Dong, Ran ; Lan, Li-Na ; Li, Shu-Fen ; Gao, Wu-Jun ; Niu, Hong-Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-b866eccd3633269ff8a1865a053a3c73408626b7bf345fdb1af31643af8245083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chloroplasts</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA structure</topic><topic>Evolution</topic><topic>Flowers &amp; plants</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Homology</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Mutation</topic><topic>Non-homologous end joining</topic><topic>Nucleotide sequence</topic><topic>Plant mitochondria</topic><topic>Review</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guo-Jun</creatorcontrib><creatorcontrib>Dong, Ran</creatorcontrib><creatorcontrib>Lan, Li-Na</creatorcontrib><creatorcontrib>Li, Shu-Fen</creatorcontrib><creatorcontrib>Gao, Wu-Jun</creatorcontrib><creatorcontrib>Niu, Hong-Xing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guo-Jun</au><au>Dong, Ran</au><au>Lan, Li-Na</au><au>Li, Shu-Fen</au><au>Gao, Wu-Jun</au><au>Niu, Hong-Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-01-21</date><risdate>2020</risdate><volume>21</volume><issue>3</issue><spage>707</spage><pages>707-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31973163</pmid><doi>10.3390/ijms21030707</doi><orcidid>https://orcid.org/0000-0001-8160-7776</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-01, Vol.21 (3), p.707
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7037861
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Chloroplasts
Chromosomes
Deoxyribonucleic acid
DNA
DNA structure
Evolution
Flowers & plants
Genes
Genetic diversity
Genetic engineering
Genomes
Homology
Mitochondria
Mitochondrial DNA
Mutation
Non-homologous end joining
Nucleotide sequence
Plant mitochondria
Review
Statistical analysis
title Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20Integrants%20of%20Organellar%20DNA%20Contribute%20to%20Genome%20Structure%20and%20Evolution%20in%20Plants&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Zhang,%20Guo-Jun&rft.date=2020-01-21&rft.volume=21&rft.issue=3&rft.spage=707&rft.pages=707-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21030707&rft_dat=%3Cproquest_pubme%3E2344275467%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548679390&rft_id=info:pmid/31973163&rfr_iscdi=true