Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants
The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-01, Vol.21 (3), p.707 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 707 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Zhang, Guo-Jun Dong, Ran Lan, Li-Na Li, Shu-Fen Gao, Wu-Jun Niu, Hong-Xing |
description | The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed. |
doi_str_mv | 10.3390/ijms21030707 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7037861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344275467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-b866eccd3633269ff8a1865a053a3c73408626b7bf345fdb1af31643af8245083</originalsourceid><addsrcrecordid>eNpdkc1LXDEUxUNpqVa7cy2BbrrotEluXpK3KchorSAqtF11EfIyyfQN7yU2H4L_vRm0MnZ1L5wfh3M4CB1R8hmgJ1_GzZwZJUAkka_QPuWMLQgR8vXOv4fe5bwhhAHr-rdoD2gvgQrYR7-vqp2cSfgiFLdOJpSMo8fXaW2Cm6YmnF6d4GUMJY1DLQ6XiM9diLPDP0qqttTksAkrfHYXp1rGGPAY8M20NTpEb7yZsnv_dA_Qr29nP5ffF5fX5xfLk8uF5VKVxaCEcNauQAAw0XuvDFWiM6QDA1YCJ0owMcjBA-_8aqDGt-wcjFeMd0TBAfr66Htbh9mtrGthzaRv0zibdK-jGfVLJYx_9DreaUlAKkGbwccngxT_VpeLnsdst_WDizVrBpwz2XEhG_rhP3QTawqtnmYdV0L2bZNGfXqkbIo5J-efw1Cit6vp3dUafrxb4Bn-NxM8AGV7kw4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548679390</pqid></control><display><type>article</type><title>Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Zhang, Guo-Jun ; Dong, Ran ; Lan, Li-Na ; Li, Shu-Fen ; Gao, Wu-Jun ; Niu, Hong-Xing</creator><creatorcontrib>Zhang, Guo-Jun ; Dong, Ran ; Lan, Li-Na ; Li, Shu-Fen ; Gao, Wu-Jun ; Niu, Hong-Xing</creatorcontrib><description>The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21030707</identifier><identifier>PMID: 31973163</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Chloroplasts ; Chromosomes ; Deoxyribonucleic acid ; DNA ; DNA structure ; Evolution ; Flowers & plants ; Genes ; Genetic diversity ; Genetic engineering ; Genomes ; Homology ; Mitochondria ; Mitochondrial DNA ; Mutation ; Non-homologous end joining ; Nucleotide sequence ; Plant mitochondria ; Review ; Statistical analysis</subject><ispartof>International journal of molecular sciences, 2020-01, Vol.21 (3), p.707</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-b866eccd3633269ff8a1865a053a3c73408626b7bf345fdb1af31643af8245083</citedby><cites>FETCH-LOGICAL-c478t-b866eccd3633269ff8a1865a053a3c73408626b7bf345fdb1af31643af8245083</cites><orcidid>0000-0001-8160-7776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037861/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037861/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31973163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Guo-Jun</creatorcontrib><creatorcontrib>Dong, Ran</creatorcontrib><creatorcontrib>Lan, Li-Na</creatorcontrib><creatorcontrib>Li, Shu-Fen</creatorcontrib><creatorcontrib>Gao, Wu-Jun</creatorcontrib><creatorcontrib>Niu, Hong-Xing</creatorcontrib><title>Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed.</description><subject>Chloroplasts</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA structure</subject><subject>Evolution</subject><subject>Flowers & plants</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Homology</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Mutation</subject><subject>Non-homologous end joining</subject><subject>Nucleotide sequence</subject><subject>Plant mitochondria</subject><subject>Review</subject><subject>Statistical analysis</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1LXDEUxUNpqVa7cy2BbrrotEluXpK3KchorSAqtF11EfIyyfQN7yU2H4L_vRm0MnZ1L5wfh3M4CB1R8hmgJ1_GzZwZJUAkka_QPuWMLQgR8vXOv4fe5bwhhAHr-rdoD2gvgQrYR7-vqp2cSfgiFLdOJpSMo8fXaW2Cm6YmnF6d4GUMJY1DLQ6XiM9diLPDP0qqttTksAkrfHYXp1rGGPAY8M20NTpEb7yZsnv_dA_Qr29nP5ffF5fX5xfLk8uF5VKVxaCEcNauQAAw0XuvDFWiM6QDA1YCJ0owMcjBA-_8aqDGt-wcjFeMd0TBAfr66Htbh9mtrGthzaRv0zibdK-jGfVLJYx_9DreaUlAKkGbwccngxT_VpeLnsdst_WDizVrBpwz2XEhG_rhP3QTawqtnmYdV0L2bZNGfXqkbIo5J-efw1Cit6vp3dUafrxb4Bn-NxM8AGV7kw4</recordid><startdate>20200121</startdate><enddate>20200121</enddate><creator>Zhang, Guo-Jun</creator><creator>Dong, Ran</creator><creator>Lan, Li-Na</creator><creator>Li, Shu-Fen</creator><creator>Gao, Wu-Jun</creator><creator>Niu, Hong-Xing</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8160-7776</orcidid></search><sort><creationdate>20200121</creationdate><title>Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants</title><author>Zhang, Guo-Jun ; Dong, Ran ; Lan, Li-Na ; Li, Shu-Fen ; Gao, Wu-Jun ; Niu, Hong-Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-b866eccd3633269ff8a1865a053a3c73408626b7bf345fdb1af31643af8245083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chloroplasts</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA structure</topic><topic>Evolution</topic><topic>Flowers & plants</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Homology</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Mutation</topic><topic>Non-homologous end joining</topic><topic>Nucleotide sequence</topic><topic>Plant mitochondria</topic><topic>Review</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guo-Jun</creatorcontrib><creatorcontrib>Dong, Ran</creatorcontrib><creatorcontrib>Lan, Li-Na</creatorcontrib><creatorcontrib>Li, Shu-Fen</creatorcontrib><creatorcontrib>Gao, Wu-Jun</creatorcontrib><creatorcontrib>Niu, Hong-Xing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guo-Jun</au><au>Dong, Ran</au><au>Lan, Li-Na</au><au>Li, Shu-Fen</au><au>Gao, Wu-Jun</au><au>Niu, Hong-Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-01-21</date><risdate>2020</risdate><volume>21</volume><issue>3</issue><spage>707</spage><pages>707-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31973163</pmid><doi>10.3390/ijms21030707</doi><orcidid>https://orcid.org/0000-0001-8160-7776</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-01, Vol.21 (3), p.707 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7037861 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Chloroplasts Chromosomes Deoxyribonucleic acid DNA DNA structure Evolution Flowers & plants Genes Genetic diversity Genetic engineering Genomes Homology Mitochondria Mitochondrial DNA Mutation Non-homologous end joining Nucleotide sequence Plant mitochondria Review Statistical analysis |
title | Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20Integrants%20of%20Organellar%20DNA%20Contribute%20to%20Genome%20Structure%20and%20Evolution%20in%20Plants&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Zhang,%20Guo-Jun&rft.date=2020-01-21&rft.volume=21&rft.issue=3&rft.spage=707&rft.pages=707-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21030707&rft_dat=%3Cproquest_pubme%3E2344275467%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548679390&rft_id=info:pmid/31973163&rfr_iscdi=true |