A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images

Pneumonia is among the top diseases which cause most of the deaths all over the world. Virus, bacteria and fungi can all cause pneumonia. However, it is difficult to judge the pneumonia just by looking at chest X-rays. The aim of this study is to simplify the pneumonia detection process for experts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-01, Vol.10 (2), p.559
Hauptverfasser: Chouhan, Vikash, Singh, Sanjay Kumar, Khamparia, Aditya, Gupta, Deepak, Tiwari, Prayag, Moreira, Catarina, Damaševičius, Robertas, de Albuquerque, Victor Hugo C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 559
container_title Applied sciences
container_volume 10
creator Chouhan, Vikash
Singh, Sanjay Kumar
Khamparia, Aditya
Gupta, Deepak
Tiwari, Prayag
Moreira, Catarina
Damaševičius, Robertas
de Albuquerque, Victor Hugo C.
description Pneumonia is among the top diseases which cause most of the deaths all over the world. Virus, bacteria and fungi can all cause pneumonia. However, it is difficult to judge the pneumonia just by looking at chest X-rays. The aim of this study is to simplify the pneumonia detection process for experts as well as for novices. We suggest a novel deep learning framework for the detection of pneumonia using the concept of transfer learning. In this approach, features from images are extracted using different neural network models pretrained on ImageNet, which then are fed into a classifier for prediction. We prepared five different models and analyzed their performance. Thereafter, we proposed an ensemble model that combines outputs from all pretrained models, which outperformed individual models, reaching the state-of-the-art performance in pneumonia recognition. Our ensemble model reached an accuracy of 96.4% with a recall of 99.62% on unseen data from the Guangzhou Women and Children’s Medical Center dataset.
doi_str_mv 10.3390/app10020559
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6a3a780a05ba43018fcb77d666f69acc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6a3a780a05ba43018fcb77d666f69acc</doaj_id><sourcerecordid>2468775627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-ec77eddacee04faf1d4c33b2db3cdfb076371a4eaed4ee9cc0b06732e418abdc3</originalsourceid><addsrcrecordid>eNpNUU1LAzEUXETBUnvyDwQ8ymqyySa7x1q_CkU9VPEW3iYv7ZZ2syZbof_erRXpu7zHMMybYZLkktEbzkt6C23LKM1onpcnySCjSqZcMHV6dJ8noxhXtJ-S8YLRQfIxJi_-G9dkHqCJDgOZIYSmbhbkDiJaMm7b4MEsifOBvDW43fimBnKPHZqu9g2pGzJZYuzIZxpgR6YbWGC8SM4crCOO_vYweX98mE-e09nr03QynqWGS9GlaJRCa8EgUuHAMSsM51VmK26sq3rbXDEQCGgFYmkMrahUPEPBCqis4cNketC1Hla6DfUGwk57qPUv4MNCQ-hqs0YtgYMqKNC8AsEpK5yplLJSSidLMHutq4NWH_hr2yfSK78NTW9fZ0IWSuUyUz3r-sAywccY0P1_ZVTve9BHPfAfrkp7GQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468775627</pqid></control><display><type>article</type><title>A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chouhan, Vikash ; Singh, Sanjay Kumar ; Khamparia, Aditya ; Gupta, Deepak ; Tiwari, Prayag ; Moreira, Catarina ; Damaševičius, Robertas ; de Albuquerque, Victor Hugo C.</creator><creatorcontrib>Chouhan, Vikash ; Singh, Sanjay Kumar ; Khamparia, Aditya ; Gupta, Deepak ; Tiwari, Prayag ; Moreira, Catarina ; Damaševičius, Robertas ; de Albuquerque, Victor Hugo C.</creatorcontrib><description>Pneumonia is among the top diseases which cause most of the deaths all over the world. Virus, bacteria and fungi can all cause pneumonia. However, it is difficult to judge the pneumonia just by looking at chest X-rays. The aim of this study is to simplify the pneumonia detection process for experts as well as for novices. We suggest a novel deep learning framework for the detection of pneumonia using the concept of transfer learning. In this approach, features from images are extracted using different neural network models pretrained on ImageNet, which then are fed into a classifier for prediction. We prepared five different models and analyzed their performance. Thereafter, we proposed an ensemble model that combines outputs from all pretrained models, which outperformed individual models, reaching the state-of-the-art performance in pneumonia recognition. Our ensemble model reached an accuracy of 96.4% with a recall of 99.62% on unseen data from the Guangzhou Women and Children’s Medical Center dataset.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10020559</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Chest ; Chronic obstructive pulmonary disease ; Classification ; computer-aided diagnosis ; Concept learning ; Deep learning ; Disease ; Fungi ; Health care facilities ; Lungs ; medical image processing ; Medical imaging ; Model accuracy ; Mortality ; Neural networks ; Pneumonia ; Transfer learning ; Viruses ; X-rays</subject><ispartof>Applied sciences, 2020-01, Vol.10 (2), p.559</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-ec77eddacee04faf1d4c33b2db3cdfb076371a4eaed4ee9cc0b06732e418abdc3</citedby><cites>FETCH-LOGICAL-c364t-ec77eddacee04faf1d4c33b2db3cdfb076371a4eaed4ee9cc0b06732e418abdc3</cites><orcidid>0000-0002-6592-2618 ; 0000-0002-2851-4260 ; 0000-0001-9990-1084 ; 0000-0002-8826-5163 ; 0000-0002-3019-7161 ; 0000-0003-3886-4309 ; 0000-0001-9019-8230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Chouhan, Vikash</creatorcontrib><creatorcontrib>Singh, Sanjay Kumar</creatorcontrib><creatorcontrib>Khamparia, Aditya</creatorcontrib><creatorcontrib>Gupta, Deepak</creatorcontrib><creatorcontrib>Tiwari, Prayag</creatorcontrib><creatorcontrib>Moreira, Catarina</creatorcontrib><creatorcontrib>Damaševičius, Robertas</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><title>A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images</title><title>Applied sciences</title><description>Pneumonia is among the top diseases which cause most of the deaths all over the world. Virus, bacteria and fungi can all cause pneumonia. However, it is difficult to judge the pneumonia just by looking at chest X-rays. The aim of this study is to simplify the pneumonia detection process for experts as well as for novices. We suggest a novel deep learning framework for the detection of pneumonia using the concept of transfer learning. In this approach, features from images are extracted using different neural network models pretrained on ImageNet, which then are fed into a classifier for prediction. We prepared five different models and analyzed their performance. Thereafter, we proposed an ensemble model that combines outputs from all pretrained models, which outperformed individual models, reaching the state-of-the-art performance in pneumonia recognition. Our ensemble model reached an accuracy of 96.4% with a recall of 99.62% on unseen data from the Guangzhou Women and Children’s Medical Center dataset.</description><subject>Chest</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Classification</subject><subject>computer-aided diagnosis</subject><subject>Concept learning</subject><subject>Deep learning</subject><subject>Disease</subject><subject>Fungi</subject><subject>Health care facilities</subject><subject>Lungs</subject><subject>medical image processing</subject><subject>Medical imaging</subject><subject>Model accuracy</subject><subject>Mortality</subject><subject>Neural networks</subject><subject>Pneumonia</subject><subject>Transfer learning</subject><subject>Viruses</subject><subject>X-rays</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEUXETBUnvyDwQ8ymqyySa7x1q_CkU9VPEW3iYv7ZZ2syZbof_erRXpu7zHMMybYZLkktEbzkt6C23LKM1onpcnySCjSqZcMHV6dJ8noxhXtJ-S8YLRQfIxJi_-G9dkHqCJDgOZIYSmbhbkDiJaMm7b4MEsifOBvDW43fimBnKPHZqu9g2pGzJZYuzIZxpgR6YbWGC8SM4crCOO_vYweX98mE-e09nr03QynqWGS9GlaJRCa8EgUuHAMSsM51VmK26sq3rbXDEQCGgFYmkMrahUPEPBCqis4cNketC1Hla6DfUGwk57qPUv4MNCQ-hqs0YtgYMqKNC8AsEpK5yplLJSSidLMHutq4NWH_hr2yfSK78NTW9fZ0IWSuUyUz3r-sAywccY0P1_ZVTve9BHPfAfrkp7GQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Chouhan, Vikash</creator><creator>Singh, Sanjay Kumar</creator><creator>Khamparia, Aditya</creator><creator>Gupta, Deepak</creator><creator>Tiwari, Prayag</creator><creator>Moreira, Catarina</creator><creator>Damaševičius, Robertas</creator><creator>de Albuquerque, Victor Hugo C.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6592-2618</orcidid><orcidid>https://orcid.org/0000-0002-2851-4260</orcidid><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid><orcidid>https://orcid.org/0000-0002-8826-5163</orcidid><orcidid>https://orcid.org/0000-0002-3019-7161</orcidid><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0001-9019-8230</orcidid></search><sort><creationdate>20200101</creationdate><title>A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images</title><author>Chouhan, Vikash ; Singh, Sanjay Kumar ; Khamparia, Aditya ; Gupta, Deepak ; Tiwari, Prayag ; Moreira, Catarina ; Damaševičius, Robertas ; de Albuquerque, Victor Hugo C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-ec77eddacee04faf1d4c33b2db3cdfb076371a4eaed4ee9cc0b06732e418abdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chest</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Classification</topic><topic>computer-aided diagnosis</topic><topic>Concept learning</topic><topic>Deep learning</topic><topic>Disease</topic><topic>Fungi</topic><topic>Health care facilities</topic><topic>Lungs</topic><topic>medical image processing</topic><topic>Medical imaging</topic><topic>Model accuracy</topic><topic>Mortality</topic><topic>Neural networks</topic><topic>Pneumonia</topic><topic>Transfer learning</topic><topic>Viruses</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chouhan, Vikash</creatorcontrib><creatorcontrib>Singh, Sanjay Kumar</creatorcontrib><creatorcontrib>Khamparia, Aditya</creatorcontrib><creatorcontrib>Gupta, Deepak</creatorcontrib><creatorcontrib>Tiwari, Prayag</creatorcontrib><creatorcontrib>Moreira, Catarina</creatorcontrib><creatorcontrib>Damaševičius, Robertas</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chouhan, Vikash</au><au>Singh, Sanjay Kumar</au><au>Khamparia, Aditya</au><au>Gupta, Deepak</au><au>Tiwari, Prayag</au><au>Moreira, Catarina</au><au>Damaševičius, Robertas</au><au>de Albuquerque, Victor Hugo C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images</atitle><jtitle>Applied sciences</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>2</issue><spage>559</spage><pages>559-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Pneumonia is among the top diseases which cause most of the deaths all over the world. Virus, bacteria and fungi can all cause pneumonia. However, it is difficult to judge the pneumonia just by looking at chest X-rays. The aim of this study is to simplify the pneumonia detection process for experts as well as for novices. We suggest a novel deep learning framework for the detection of pneumonia using the concept of transfer learning. In this approach, features from images are extracted using different neural network models pretrained on ImageNet, which then are fed into a classifier for prediction. We prepared five different models and analyzed their performance. Thereafter, we proposed an ensemble model that combines outputs from all pretrained models, which outperformed individual models, reaching the state-of-the-art performance in pneumonia recognition. Our ensemble model reached an accuracy of 96.4% with a recall of 99.62% on unseen data from the Guangzhou Women and Children’s Medical Center dataset.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10020559</doi><orcidid>https://orcid.org/0000-0002-6592-2618</orcidid><orcidid>https://orcid.org/0000-0002-2851-4260</orcidid><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid><orcidid>https://orcid.org/0000-0002-8826-5163</orcidid><orcidid>https://orcid.org/0000-0002-3019-7161</orcidid><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0001-9019-8230</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2020-01, Vol.10 (2), p.559
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6a3a780a05ba43018fcb77d666f69acc
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Chest
Chronic obstructive pulmonary disease
Classification
computer-aided diagnosis
Concept learning
Deep learning
Disease
Fungi
Health care facilities
Lungs
medical image processing
Medical imaging
Model accuracy
Mortality
Neural networks
Pneumonia
Transfer learning
Viruses
X-rays
title A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Transfer%20Learning%20Based%20Approach%20for%20Pneumonia%20Detection%20in%20Chest%20X-ray%20Images&rft.jtitle=Applied%20sciences&rft.au=Chouhan,%20Vikash&rft.date=2020-01-01&rft.volume=10&rft.issue=2&rft.spage=559&rft.pages=559-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10020559&rft_dat=%3Cproquest_doaj_%3E2468775627%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468775627&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_6a3a780a05ba43018fcb77d666f69acc&rfr_iscdi=true