A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images
Pneumonia is among the top diseases which cause most of the deaths all over the world. Virus, bacteria and fungi can all cause pneumonia. However, it is difficult to judge the pneumonia just by looking at chest X-rays. The aim of this study is to simplify the pneumonia detection process for experts...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2020-01, Vol.10 (2), p.559 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 559 |
container_title | Applied sciences |
container_volume | 10 |
creator | Chouhan, Vikash Singh, Sanjay Kumar Khamparia, Aditya Gupta, Deepak Tiwari, Prayag Moreira, Catarina Damaševičius, Robertas de Albuquerque, Victor Hugo C. |
description | Pneumonia is among the top diseases which cause most of the deaths all over the world. Virus, bacteria and fungi can all cause pneumonia. However, it is difficult to judge the pneumonia just by looking at chest X-rays. The aim of this study is to simplify the pneumonia detection process for experts as well as for novices. We suggest a novel deep learning framework for the detection of pneumonia using the concept of transfer learning. In this approach, features from images are extracted using different neural network models pretrained on ImageNet, which then are fed into a classifier for prediction. We prepared five different models and analyzed their performance. Thereafter, we proposed an ensemble model that combines outputs from all pretrained models, which outperformed individual models, reaching the state-of-the-art performance in pneumonia recognition. Our ensemble model reached an accuracy of 96.4% with a recall of 99.62% on unseen data from the Guangzhou Women and Children’s Medical Center dataset. |
doi_str_mv | 10.3390/app10020559 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6a3a780a05ba43018fcb77d666f69acc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6a3a780a05ba43018fcb77d666f69acc</doaj_id><sourcerecordid>2468775627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-ec77eddacee04faf1d4c33b2db3cdfb076371a4eaed4ee9cc0b06732e418abdc3</originalsourceid><addsrcrecordid>eNpNUU1LAzEUXETBUnvyDwQ8ymqyySa7x1q_CkU9VPEW3iYv7ZZ2syZbof_erRXpu7zHMMybYZLkktEbzkt6C23LKM1onpcnySCjSqZcMHV6dJ8noxhXtJ-S8YLRQfIxJi_-G9dkHqCJDgOZIYSmbhbkDiJaMm7b4MEsifOBvDW43fimBnKPHZqu9g2pGzJZYuzIZxpgR6YbWGC8SM4crCOO_vYweX98mE-e09nr03QynqWGS9GlaJRCa8EgUuHAMSsM51VmK26sq3rbXDEQCGgFYmkMrahUPEPBCqis4cNketC1Hla6DfUGwk57qPUv4MNCQ-hqs0YtgYMqKNC8AsEpK5yplLJSSidLMHutq4NWH_hr2yfSK78NTW9fZ0IWSuUyUz3r-sAywccY0P1_ZVTve9BHPfAfrkp7GQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468775627</pqid></control><display><type>article</type><title>A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chouhan, Vikash ; Singh, Sanjay Kumar ; Khamparia, Aditya ; Gupta, Deepak ; Tiwari, Prayag ; Moreira, Catarina ; Damaševičius, Robertas ; de Albuquerque, Victor Hugo C.</creator><creatorcontrib>Chouhan, Vikash ; Singh, Sanjay Kumar ; Khamparia, Aditya ; Gupta, Deepak ; Tiwari, Prayag ; Moreira, Catarina ; Damaševičius, Robertas ; de Albuquerque, Victor Hugo C.</creatorcontrib><description>Pneumonia is among the top diseases which cause most of the deaths all over the world. Virus, bacteria and fungi can all cause pneumonia. However, it is difficult to judge the pneumonia just by looking at chest X-rays. The aim of this study is to simplify the pneumonia detection process for experts as well as for novices. We suggest a novel deep learning framework for the detection of pneumonia using the concept of transfer learning. In this approach, features from images are extracted using different neural network models pretrained on ImageNet, which then are fed into a classifier for prediction. We prepared five different models and analyzed their performance. Thereafter, we proposed an ensemble model that combines outputs from all pretrained models, which outperformed individual models, reaching the state-of-the-art performance in pneumonia recognition. Our ensemble model reached an accuracy of 96.4% with a recall of 99.62% on unseen data from the Guangzhou Women and Children’s Medical Center dataset.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10020559</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Chest ; Chronic obstructive pulmonary disease ; Classification ; computer-aided diagnosis ; Concept learning ; Deep learning ; Disease ; Fungi ; Health care facilities ; Lungs ; medical image processing ; Medical imaging ; Model accuracy ; Mortality ; Neural networks ; Pneumonia ; Transfer learning ; Viruses ; X-rays</subject><ispartof>Applied sciences, 2020-01, Vol.10 (2), p.559</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-ec77eddacee04faf1d4c33b2db3cdfb076371a4eaed4ee9cc0b06732e418abdc3</citedby><cites>FETCH-LOGICAL-c364t-ec77eddacee04faf1d4c33b2db3cdfb076371a4eaed4ee9cc0b06732e418abdc3</cites><orcidid>0000-0002-6592-2618 ; 0000-0002-2851-4260 ; 0000-0001-9990-1084 ; 0000-0002-8826-5163 ; 0000-0002-3019-7161 ; 0000-0003-3886-4309 ; 0000-0001-9019-8230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Chouhan, Vikash</creatorcontrib><creatorcontrib>Singh, Sanjay Kumar</creatorcontrib><creatorcontrib>Khamparia, Aditya</creatorcontrib><creatorcontrib>Gupta, Deepak</creatorcontrib><creatorcontrib>Tiwari, Prayag</creatorcontrib><creatorcontrib>Moreira, Catarina</creatorcontrib><creatorcontrib>Damaševičius, Robertas</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><title>A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images</title><title>Applied sciences</title><description>Pneumonia is among the top diseases which cause most of the deaths all over the world. Virus, bacteria and fungi can all cause pneumonia. However, it is difficult to judge the pneumonia just by looking at chest X-rays. The aim of this study is to simplify the pneumonia detection process for experts as well as for novices. We suggest a novel deep learning framework for the detection of pneumonia using the concept of transfer learning. In this approach, features from images are extracted using different neural network models pretrained on ImageNet, which then are fed into a classifier for prediction. We prepared five different models and analyzed their performance. Thereafter, we proposed an ensemble model that combines outputs from all pretrained models, which outperformed individual models, reaching the state-of-the-art performance in pneumonia recognition. Our ensemble model reached an accuracy of 96.4% with a recall of 99.62% on unseen data from the Guangzhou Women and Children’s Medical Center dataset.</description><subject>Chest</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Classification</subject><subject>computer-aided diagnosis</subject><subject>Concept learning</subject><subject>Deep learning</subject><subject>Disease</subject><subject>Fungi</subject><subject>Health care facilities</subject><subject>Lungs</subject><subject>medical image processing</subject><subject>Medical imaging</subject><subject>Model accuracy</subject><subject>Mortality</subject><subject>Neural networks</subject><subject>Pneumonia</subject><subject>Transfer learning</subject><subject>Viruses</subject><subject>X-rays</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEUXETBUnvyDwQ8ymqyySa7x1q_CkU9VPEW3iYv7ZZ2syZbof_erRXpu7zHMMybYZLkktEbzkt6C23LKM1onpcnySCjSqZcMHV6dJ8noxhXtJ-S8YLRQfIxJi_-G9dkHqCJDgOZIYSmbhbkDiJaMm7b4MEsifOBvDW43fimBnKPHZqu9g2pGzJZYuzIZxpgR6YbWGC8SM4crCOO_vYweX98mE-e09nr03QynqWGS9GlaJRCa8EgUuHAMSsM51VmK26sq3rbXDEQCGgFYmkMrahUPEPBCqis4cNketC1Hla6DfUGwk57qPUv4MNCQ-hqs0YtgYMqKNC8AsEpK5yplLJSSidLMHutq4NWH_hr2yfSK78NTW9fZ0IWSuUyUz3r-sAywccY0P1_ZVTve9BHPfAfrkp7GQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Chouhan, Vikash</creator><creator>Singh, Sanjay Kumar</creator><creator>Khamparia, Aditya</creator><creator>Gupta, Deepak</creator><creator>Tiwari, Prayag</creator><creator>Moreira, Catarina</creator><creator>Damaševičius, Robertas</creator><creator>de Albuquerque, Victor Hugo C.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6592-2618</orcidid><orcidid>https://orcid.org/0000-0002-2851-4260</orcidid><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid><orcidid>https://orcid.org/0000-0002-8826-5163</orcidid><orcidid>https://orcid.org/0000-0002-3019-7161</orcidid><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0001-9019-8230</orcidid></search><sort><creationdate>20200101</creationdate><title>A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images</title><author>Chouhan, Vikash ; Singh, Sanjay Kumar ; Khamparia, Aditya ; Gupta, Deepak ; Tiwari, Prayag ; Moreira, Catarina ; Damaševičius, Robertas ; de Albuquerque, Victor Hugo C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-ec77eddacee04faf1d4c33b2db3cdfb076371a4eaed4ee9cc0b06732e418abdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chest</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Classification</topic><topic>computer-aided diagnosis</topic><topic>Concept learning</topic><topic>Deep learning</topic><topic>Disease</topic><topic>Fungi</topic><topic>Health care facilities</topic><topic>Lungs</topic><topic>medical image processing</topic><topic>Medical imaging</topic><topic>Model accuracy</topic><topic>Mortality</topic><topic>Neural networks</topic><topic>Pneumonia</topic><topic>Transfer learning</topic><topic>Viruses</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chouhan, Vikash</creatorcontrib><creatorcontrib>Singh, Sanjay Kumar</creatorcontrib><creatorcontrib>Khamparia, Aditya</creatorcontrib><creatorcontrib>Gupta, Deepak</creatorcontrib><creatorcontrib>Tiwari, Prayag</creatorcontrib><creatorcontrib>Moreira, Catarina</creatorcontrib><creatorcontrib>Damaševičius, Robertas</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chouhan, Vikash</au><au>Singh, Sanjay Kumar</au><au>Khamparia, Aditya</au><au>Gupta, Deepak</au><au>Tiwari, Prayag</au><au>Moreira, Catarina</au><au>Damaševičius, Robertas</au><au>de Albuquerque, Victor Hugo C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images</atitle><jtitle>Applied sciences</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>2</issue><spage>559</spage><pages>559-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Pneumonia is among the top diseases which cause most of the deaths all over the world. Virus, bacteria and fungi can all cause pneumonia. However, it is difficult to judge the pneumonia just by looking at chest X-rays. The aim of this study is to simplify the pneumonia detection process for experts as well as for novices. We suggest a novel deep learning framework for the detection of pneumonia using the concept of transfer learning. In this approach, features from images are extracted using different neural network models pretrained on ImageNet, which then are fed into a classifier for prediction. We prepared five different models and analyzed their performance. Thereafter, we proposed an ensemble model that combines outputs from all pretrained models, which outperformed individual models, reaching the state-of-the-art performance in pneumonia recognition. Our ensemble model reached an accuracy of 96.4% with a recall of 99.62% on unseen data from the Guangzhou Women and Children’s Medical Center dataset.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10020559</doi><orcidid>https://orcid.org/0000-0002-6592-2618</orcidid><orcidid>https://orcid.org/0000-0002-2851-4260</orcidid><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid><orcidid>https://orcid.org/0000-0002-8826-5163</orcidid><orcidid>https://orcid.org/0000-0002-3019-7161</orcidid><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0001-9019-8230</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2020-01, Vol.10 (2), p.559 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6a3a780a05ba43018fcb77d666f69acc |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Chest Chronic obstructive pulmonary disease Classification computer-aided diagnosis Concept learning Deep learning Disease Fungi Health care facilities Lungs medical image processing Medical imaging Model accuracy Mortality Neural networks Pneumonia Transfer learning Viruses X-rays |
title | A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Transfer%20Learning%20Based%20Approach%20for%20Pneumonia%20Detection%20in%20Chest%20X-ray%20Images&rft.jtitle=Applied%20sciences&rft.au=Chouhan,%20Vikash&rft.date=2020-01-01&rft.volume=10&rft.issue=2&rft.spage=559&rft.pages=559-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10020559&rft_dat=%3Cproquest_doaj_%3E2468775627%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468775627&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_6a3a780a05ba43018fcb77d666f69acc&rfr_iscdi=true |