An Efficient Algorithm for Eigenvalue Problem of Latin Squares in a Bipartite Min-Max-Plus System

In this paper, we consider the eigenproblems for Latin squares in a bipartite min-max-plus system. The focus is upon developing a new algorithm to compute the eigenvalue and eigenvectors (trivial and non-trivial) for Latin squares in a bipartite min-max-plus system. We illustrate the algorithm using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2020-02, Vol.12 (2), p.311
Hauptverfasser: Umer, Mubasher, Hayat, Umar, Abbas, Fazal, Agarwal, Anurag, Kitanov, Petko
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the eigenproblems for Latin squares in a bipartite min-max-plus system. The focus is upon developing a new algorithm to compute the eigenvalue and eigenvectors (trivial and non-trivial) for Latin squares in a bipartite min-max-plus system. We illustrate the algorithm using some examples. The proposed algorithm is implemented in MATLAB, using max-plus algebra toolbox. Computationally speaking, our algorithm has a clear advantage over the power algorithm presented by Subiono and van der Woude. Because our algorithm takes 0 . 088783 sec to solve the eigenvalue problem for Latin square presented in Example 2, while the compared one takes 1 . 718662 sec for the same problem. Furthermore, a time complexity comparison is presented, which reveals that the proposed algorithm is less time consuming when compared with some of the existing algorithms.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym12020311