Moisture diffusion in plasma-enhanced chemical vapor deposition dielectrics characterized with three techniques under clean room conditions
•Mass, stress and infrared spectroscopy monitoring yield similar diffusion coefficient.•Moisture uptake can be significant even at clean room conditions for dielectrics.•A dual stage model seems to be more adapted to model moisture diffusion. Absorption of moisture by thin dielectric materials alter...
Gespeichert in:
Veröffentlicht in: | Thin solid films 2020-03, Vol.698, p.137874, Article 137874 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 137874 |
container_title | Thin solid films |
container_volume | 698 |
creator | Cartailler, Vivien Imbert, Grégory Rochat, Névine Chaton, Catherine Vo-Thanh, Du Benoit, Daniel Duchamp, Geneviève Frémont, Hélène |
description | •Mass, stress and infrared spectroscopy monitoring yield similar diffusion coefficient.•Moisture uptake can be significant even at clean room conditions for dielectrics.•A dual stage model seems to be more adapted to model moisture diffusion.
Absorption of moisture by thin dielectric materials alters their properties and can cause several reliability issues. Even at standard room temperature and low humidity level, some dielectric materials are sensitive to moisture. In this study, moisture diffusion in two plasma-enhanced chemical vapor deposition (PECVD) films is investigated with three measurement methods to determine diffusion coefficients and saturated moisture concentrations: mass measurements, bending radius of curvature measurements and infrared spectroscopy. The two PECVD silicon dioxides are deposited at 200 °C and 400 °C. They were exposed to moisture in clean room environment (21 °C and 40% relative humidity) for about 800 h. The present results confirm that mass measurements, bending radius of curvature measurements and infrared spectroscopy can be used to monitor thin dielectric films in these environmental conditions. They lead to similar values for the diffusion coefficient. These values are in the range of [1.5–4.2] × 10−15 cm² s−1 for the 200 °C film and [2.3–3.6] × 10−15 cm² s−1 for the 400 °C one. Saturated moisture concentrations confirm that the two dielectrics are sensitive to moisture even at 21 °C, 40% relative humidity. Besides, the results show that standard fickean behavior does not provide the best fit to model water diffusion for some dielectric films. A dual stage model that appears to be more adapted is finally introduced. |
doi_str_mv | 10.1016/j.tsf.2020.137874 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000521128800013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609020300894</els_id><sourcerecordid>S0040609020300894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-3693e1b5ccbb3480890789ef8bb750198e251ddae823caa56489c31b906d89323</originalsourceid><addsrcrecordid>eNqNkcuKFDEUQIMo2I5-gLtsRarNox4pXA2NOkKLG12HVHKLuk110iapHvQX_GlT1jBLcRUSzrmEcwl5zdmeM96-O-1zGveCiXKXnerqJ2THVddXopP8KdkxVrOqZT17Tl6kdGKMcSHkjvz-EjDlJQJ1OI5LwuApenqZTTqbCvxkvAVH7QRntGamV3MJkTq4hIR5hR3CDDZHtKlQJhqbIeKv4txjnmieIgDNYCePPxZIdPEOIrUzGE9jCGdqg3d_R6WX5Nlo5gSvHs4b8v3jh2-Hu-r49dPnw-2xslK0uZJtL4EPjbXDIGvFVM861cOohqFrGO8ViIY7Z0AJaY1p2lr1VvKhZ61TvRTyhrzZ5k5m1peIZxN_6mBQ390e9frGyoBGivrKC8s31saQUoTxUeBMr-X1SZfyei2vt_LFebs59zCEMVmE0vDRK-kbwblQal2CLLT6f_qA2aytDmHxuajvNxVKrStC1A-6w1h2ol3Af3zzD5vrr08</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Moisture diffusion in plasma-enhanced chemical vapor deposition dielectrics characterized with three techniques under clean room conditions</title><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Cartailler, Vivien ; Imbert, Grégory ; Rochat, Névine ; Chaton, Catherine ; Vo-Thanh, Du ; Benoit, Daniel ; Duchamp, Geneviève ; Frémont, Hélène</creator><creatorcontrib>Cartailler, Vivien ; Imbert, Grégory ; Rochat, Névine ; Chaton, Catherine ; Vo-Thanh, Du ; Benoit, Daniel ; Duchamp, Geneviève ; Frémont, Hélène</creatorcontrib><description>•Mass, stress and infrared spectroscopy monitoring yield similar diffusion coefficient.•Moisture uptake can be significant even at clean room conditions for dielectrics.•A dual stage model seems to be more adapted to model moisture diffusion.
Absorption of moisture by thin dielectric materials alters their properties and can cause several reliability issues. Even at standard room temperature and low humidity level, some dielectric materials are sensitive to moisture. In this study, moisture diffusion in two plasma-enhanced chemical vapor deposition (PECVD) films is investigated with three measurement methods to determine diffusion coefficients and saturated moisture concentrations: mass measurements, bending radius of curvature measurements and infrared spectroscopy. The two PECVD silicon dioxides are deposited at 200 °C and 400 °C. They were exposed to moisture in clean room environment (21 °C and 40% relative humidity) for about 800 h. The present results confirm that mass measurements, bending radius of curvature measurements and infrared spectroscopy can be used to monitor thin dielectric films in these environmental conditions. They lead to similar values for the diffusion coefficient. These values are in the range of [1.5–4.2] × 10−15 cm² s−1 for the 200 °C film and [2.3–3.6] × 10−15 cm² s−1 for the 400 °C one. Saturated moisture concentrations confirm that the two dielectrics are sensitive to moisture even at 21 °C, 40% relative humidity. Besides, the results show that standard fickean behavior does not provide the best fit to model water diffusion for some dielectric films. A dual stage model that appears to be more adapted is finally introduced.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2020.137874</identifier><language>eng</language><publisher>LAUSANNE: Elsevier B.V</publisher><subject>Engineering Sciences ; Materials Science ; Materials Science, Coatings & Films ; Materials Science, Multidisciplinary ; Micro and nanotechnologies ; Microelectronics ; Moisture diffusion ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Plasma-enhanced chemical vapor deposition ; Science & Technology ; Silicon oxide ; Technology ; Thin dielectric film</subject><ispartof>Thin solid films, 2020-03, Vol.698, p.137874, Article 137874</ispartof><rights>2020 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000521128800013</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c326t-3693e1b5ccbb3480890789ef8bb750198e251ddae823caa56489c31b906d89323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2020.137874$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,28257,46004</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02515324$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cartailler, Vivien</creatorcontrib><creatorcontrib>Imbert, Grégory</creatorcontrib><creatorcontrib>Rochat, Névine</creatorcontrib><creatorcontrib>Chaton, Catherine</creatorcontrib><creatorcontrib>Vo-Thanh, Du</creatorcontrib><creatorcontrib>Benoit, Daniel</creatorcontrib><creatorcontrib>Duchamp, Geneviève</creatorcontrib><creatorcontrib>Frémont, Hélène</creatorcontrib><title>Moisture diffusion in plasma-enhanced chemical vapor deposition dielectrics characterized with three techniques under clean room conditions</title><title>Thin solid films</title><addtitle>THIN SOLID FILMS</addtitle><description>•Mass, stress and infrared spectroscopy monitoring yield similar diffusion coefficient.•Moisture uptake can be significant even at clean room conditions for dielectrics.•A dual stage model seems to be more adapted to model moisture diffusion.
Absorption of moisture by thin dielectric materials alters their properties and can cause several reliability issues. Even at standard room temperature and low humidity level, some dielectric materials are sensitive to moisture. In this study, moisture diffusion in two plasma-enhanced chemical vapor deposition (PECVD) films is investigated with three measurement methods to determine diffusion coefficients and saturated moisture concentrations: mass measurements, bending radius of curvature measurements and infrared spectroscopy. The two PECVD silicon dioxides are deposited at 200 °C and 400 °C. They were exposed to moisture in clean room environment (21 °C and 40% relative humidity) for about 800 h. The present results confirm that mass measurements, bending radius of curvature measurements and infrared spectroscopy can be used to monitor thin dielectric films in these environmental conditions. They lead to similar values for the diffusion coefficient. These values are in the range of [1.5–4.2] × 10−15 cm² s−1 for the 200 °C film and [2.3–3.6] × 10−15 cm² s−1 for the 400 °C one. Saturated moisture concentrations confirm that the two dielectrics are sensitive to moisture even at 21 °C, 40% relative humidity. Besides, the results show that standard fickean behavior does not provide the best fit to model water diffusion for some dielectric films. A dual stage model that appears to be more adapted is finally introduced.</description><subject>Engineering Sciences</subject><subject>Materials Science</subject><subject>Materials Science, Coatings & Films</subject><subject>Materials Science, Multidisciplinary</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Moisture diffusion</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Plasma-enhanced chemical vapor deposition</subject><subject>Science & Technology</subject><subject>Silicon oxide</subject><subject>Technology</subject><subject>Thin dielectric film</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkcuKFDEUQIMo2I5-gLtsRarNox4pXA2NOkKLG12HVHKLuk110iapHvQX_GlT1jBLcRUSzrmEcwl5zdmeM96-O-1zGveCiXKXnerqJ2THVddXopP8KdkxVrOqZT17Tl6kdGKMcSHkjvz-EjDlJQJ1OI5LwuApenqZTTqbCvxkvAVH7QRntGamV3MJkTq4hIR5hR3CDDZHtKlQJhqbIeKv4txjnmieIgDNYCePPxZIdPEOIrUzGE9jCGdqg3d_R6WX5Nlo5gSvHs4b8v3jh2-Hu-r49dPnw-2xslK0uZJtL4EPjbXDIGvFVM861cOohqFrGO8ViIY7Z0AJaY1p2lr1VvKhZ61TvRTyhrzZ5k5m1peIZxN_6mBQ390e9frGyoBGivrKC8s31saQUoTxUeBMr-X1SZfyei2vt_LFebs59zCEMVmE0vDRK-kbwblQal2CLLT6f_qA2aytDmHxuajvNxVKrStC1A-6w1h2ol3Af3zzD5vrr08</recordid><startdate>20200331</startdate><enddate>20200331</enddate><creator>Cartailler, Vivien</creator><creator>Imbert, Grégory</creator><creator>Rochat, Névine</creator><creator>Chaton, Catherine</creator><creator>Vo-Thanh, Du</creator><creator>Benoit, Daniel</creator><creator>Duchamp, Geneviève</creator><creator>Frémont, Hélène</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20200331</creationdate><title>Moisture diffusion in plasma-enhanced chemical vapor deposition dielectrics characterized with three techniques under clean room conditions</title><author>Cartailler, Vivien ; Imbert, Grégory ; Rochat, Névine ; Chaton, Catherine ; Vo-Thanh, Du ; Benoit, Daniel ; Duchamp, Geneviève ; Frémont, Hélène</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-3693e1b5ccbb3480890789ef8bb750198e251ddae823caa56489c31b906d89323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Engineering Sciences</topic><topic>Materials Science</topic><topic>Materials Science, Coatings & Films</topic><topic>Materials Science, Multidisciplinary</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Moisture diffusion</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Plasma-enhanced chemical vapor deposition</topic><topic>Science & Technology</topic><topic>Silicon oxide</topic><topic>Technology</topic><topic>Thin dielectric film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cartailler, Vivien</creatorcontrib><creatorcontrib>Imbert, Grégory</creatorcontrib><creatorcontrib>Rochat, Névine</creatorcontrib><creatorcontrib>Chaton, Catherine</creatorcontrib><creatorcontrib>Vo-Thanh, Du</creatorcontrib><creatorcontrib>Benoit, Daniel</creatorcontrib><creatorcontrib>Duchamp, Geneviève</creatorcontrib><creatorcontrib>Frémont, Hélène</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cartailler, Vivien</au><au>Imbert, Grégory</au><au>Rochat, Névine</au><au>Chaton, Catherine</au><au>Vo-Thanh, Du</au><au>Benoit, Daniel</au><au>Duchamp, Geneviève</au><au>Frémont, Hélène</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moisture diffusion in plasma-enhanced chemical vapor deposition dielectrics characterized with three techniques under clean room conditions</atitle><jtitle>Thin solid films</jtitle><stitle>THIN SOLID FILMS</stitle><date>2020-03-31</date><risdate>2020</risdate><volume>698</volume><spage>137874</spage><pages>137874-</pages><artnum>137874</artnum><issn>0040-6090</issn><eissn>1879-2731</eissn><abstract>•Mass, stress and infrared spectroscopy monitoring yield similar diffusion coefficient.•Moisture uptake can be significant even at clean room conditions for dielectrics.•A dual stage model seems to be more adapted to model moisture diffusion.
Absorption of moisture by thin dielectric materials alters their properties and can cause several reliability issues. Even at standard room temperature and low humidity level, some dielectric materials are sensitive to moisture. In this study, moisture diffusion in two plasma-enhanced chemical vapor deposition (PECVD) films is investigated with three measurement methods to determine diffusion coefficients and saturated moisture concentrations: mass measurements, bending radius of curvature measurements and infrared spectroscopy. The two PECVD silicon dioxides are deposited at 200 °C and 400 °C. They were exposed to moisture in clean room environment (21 °C and 40% relative humidity) for about 800 h. The present results confirm that mass measurements, bending radius of curvature measurements and infrared spectroscopy can be used to monitor thin dielectric films in these environmental conditions. They lead to similar values for the diffusion coefficient. These values are in the range of [1.5–4.2] × 10−15 cm² s−1 for the 200 °C film and [2.3–3.6] × 10−15 cm² s−1 for the 400 °C one. Saturated moisture concentrations confirm that the two dielectrics are sensitive to moisture even at 21 °C, 40% relative humidity. Besides, the results show that standard fickean behavior does not provide the best fit to model water diffusion for some dielectric films. A dual stage model that appears to be more adapted is finally introduced.</abstract><cop>LAUSANNE</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2020.137874</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2020-03, Vol.698, p.137874, Article 137874 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_webofscience_primary_000521128800013 |
source | Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Engineering Sciences Materials Science Materials Science, Coatings & Films Materials Science, Multidisciplinary Micro and nanotechnologies Microelectronics Moisture diffusion Physical Sciences Physics Physics, Applied Physics, Condensed Matter Plasma-enhanced chemical vapor deposition Science & Technology Silicon oxide Technology Thin dielectric film |
title | Moisture diffusion in plasma-enhanced chemical vapor deposition dielectrics characterized with three techniques under clean room conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T01%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moisture%20diffusion%20in%20plasma-enhanced%20chemical%20vapor%20deposition%20dielectrics%20characterized%20with%20three%20techniques%20under%20clean%20room%20conditions&rft.jtitle=Thin%20solid%20films&rft.au=Cartailler,%20Vivien&rft.date=2020-03-31&rft.volume=698&rft.spage=137874&rft.pages=137874-&rft.artnum=137874&rft.issn=0040-6090&rft.eissn=1879-2731&rft_id=info:doi/10.1016/j.tsf.2020.137874&rft_dat=%3Celsevier_webof%3ES0040609020300894%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0040609020300894&rfr_iscdi=true |