Prediction of Rock Size Distribution in Mine Bench Blasting Using a Novel Ant Colony Optimization-Based Boosted Regression Tree Technique
In this paper, we used artificial intelligence (AI) techniques to investigate the relation between the rock size distribution (RSD) and blasting parameters for rock fragmentation in quarries. Moreover, the ant colony optimization (ACO)–boosted regression tree (BRT) model, which is a novel AI techniq...
Gespeichert in:
Veröffentlicht in: | Natural resources research (New York, N.Y.) N.Y.), 2020-04, Vol.29 (2), p.867-886 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 886 |
---|---|
container_issue | 2 |
container_start_page | 867 |
container_title | Natural resources research (New York, N.Y.) |
container_volume | 29 |
creator | Zhang, Shike Bui, Xuan-Nam Trung, Nguyen-Thoi Nguyen, Hoang Bui, Hoang-Bac |
description | In this paper, we used artificial intelligence (AI) techniques to investigate the relation between the rock size distribution (RSD) and blasting parameters for rock fragmentation in quarries. Moreover, the ant colony optimization (ACO)–boosted regression tree (BRT) model, which is a novel AI technique for predicting RSD using the blasting parameters, is proposed based on the ACO and BRT algorithms. For predicting RSD, three well-developed models, namely the particle swarm optimization–adaptive neuro-fuzzy inference system (PSO–ANFIS), firefly algorithm (FFA)–ANFIS, and FFA–artificial neural network, were applied to the same dataset. Additionally, four benchmark AI techniques, i.e., support vector machine,
k
-nearest neighbors, principal component regression, and Gaussian process, and a conventional approach, i.e., the Kuz–Ram model, were employed for considering and predicting RSD. Using an image processing technique, the Split-Desktop software package was used to analyze the RSD of 136 blasting events at a quarry in Vietnam. Results were used as inputs, such as powder factor, explosive charge per delay, bench height, stemming length, and burden, and outputs, i.e., RSD, in this study. The novel scoring and color-intensity methods were used for visualizing several statistical criteria, including the correlation coefficient, mean absolute error, and root-mean-square error, to evaluate the model performance. Results indicate that the proposed ACO–BRT hybrid model yields higher RSD predictive accuracy than that obtained using any other model. The proposed model seems to be promising for optimizing the blasting parameters to increase the production efficiency while reducing the production costs. |
doi_str_mv | 10.1007/s11053-019-09603-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000520600500018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918336435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5458cbf5a0858f6d365afec8bba08a1f734b324d4a11e58e159587a3bb4437843</originalsourceid><addsrcrecordid>eNqNkU1vGyEQhlHVSE2d_IGekHqsSMHALnuMt_mS8qXEOSMWzzqkDriAWyX_oP86rLdKb1EuM6PhfWfgAaEvjB4wSuvviTEqOaGsIbSpKCfiA9plsuZENYp9HOopJbXgzSf0OaUHWkxcyV309zrCwtnsgsehxzfB_sS37hnwD5dydN1me-I8vnAe8Ay8vcezlUnZ-SW-S0M0-DL8hhU-9Bm3YRX8E75aZ_fons1gJjOTYIFnIaRc8g0sI6Q0TJ1HADwHe-_drw3soZ3erBLs_8sTdHd8NG9PyfnVyVl7eE4sZ00mUkhlu14aqqTqqwWvpOnBqq4rHcP6mouOT8VCGMZAKmCykao2vOuE4LUSfIK-jnPXMZS1KeuHsIm-rNTThinOK8FlUU1HlY0hpQi9Xkf3aOKTZlQPyPWIXBfkeotcD6O_jaY_0IU-WVdwwauxMC-fUJVYqrJogtT71a3LW5pt2PhcrHy0piL3S4j_3_DG9V4AwQ2liQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918336435</pqid></control><display><type>article</type><title>Prediction of Rock Size Distribution in Mine Bench Blasting Using a Novel Ant Colony Optimization-Based Boosted Regression Tree Technique</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Zhang, Shike ; Bui, Xuan-Nam ; Trung, Nguyen-Thoi ; Nguyen, Hoang ; Bui, Hoang-Bac</creator><creatorcontrib>Zhang, Shike ; Bui, Xuan-Nam ; Trung, Nguyen-Thoi ; Nguyen, Hoang ; Bui, Hoang-Bac</creatorcontrib><description>In this paper, we used artificial intelligence (AI) techniques to investigate the relation between the rock size distribution (RSD) and blasting parameters for rock fragmentation in quarries. Moreover, the ant colony optimization (ACO)–boosted regression tree (BRT) model, which is a novel AI technique for predicting RSD using the blasting parameters, is proposed based on the ACO and BRT algorithms. For predicting RSD, three well-developed models, namely the particle swarm optimization–adaptive neuro-fuzzy inference system (PSO–ANFIS), firefly algorithm (FFA)–ANFIS, and FFA–artificial neural network, were applied to the same dataset. Additionally, four benchmark AI techniques, i.e., support vector machine,
k
-nearest neighbors, principal component regression, and Gaussian process, and a conventional approach, i.e., the Kuz–Ram model, were employed for considering and predicting RSD. Using an image processing technique, the Split-Desktop software package was used to analyze the RSD of 136 blasting events at a quarry in Vietnam. Results were used as inputs, such as powder factor, explosive charge per delay, bench height, stemming length, and burden, and outputs, i.e., RSD, in this study. The novel scoring and color-intensity methods were used for visualizing several statistical criteria, including the correlation coefficient, mean absolute error, and root-mean-square error, to evaluate the model performance. Results indicate that the proposed ACO–BRT hybrid model yields higher RSD predictive accuracy than that obtained using any other model. The proposed model seems to be promising for optimizing the blasting parameters to increase the production efficiency while reducing the production costs.</description><identifier>ISSN: 1520-7439</identifier><identifier>EISSN: 1573-8981</identifier><identifier>DOI: 10.1007/s11053-019-09603-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive systems ; Algorithms ; Ant colony optimization ; Artificial intelligence ; Artificial neural networks ; Bench height ; Blasting (explosive) ; Chemistry and Earth Sciences ; Computer Science ; Correlation coefficient ; Correlation coefficients ; Earth and Environmental Science ; Earth Sciences ; Fossil Fuels (incl. Carbon Capture) ; Fuzzy logic ; Gaussian process ; Geography ; Geology ; Geosciences, Multidisciplinary ; Heuristic methods ; Image processing ; Mathematical Modeling and Industrial Mathematics ; Mineral Resources ; Neural networks ; Optimization ; Original Paper ; Parameters ; Particle swarm optimization ; Physical Sciences ; Physics ; Production costs ; Quarries ; Regression analysis ; Regression models ; Rocks ; Science & Technology ; Size distribution ; Statistical analysis ; Statistics for Engineering ; Support vector machines ; Sustainable Development</subject><ispartof>Natural resources research (New York, N.Y.), 2020-04, Vol.29 (2), p.867-886</ispartof><rights>International Association for Mathematical Geosciences 2019</rights><rights>International Association for Mathematical Geosciences 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>19</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000520600500018</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-5458cbf5a0858f6d365afec8bba08a1f734b324d4a11e58e159587a3bb4437843</citedby><cites>FETCH-LOGICAL-c319t-5458cbf5a0858f6d365afec8bba08a1f734b324d4a11e58e159587a3bb4437843</cites><orcidid>0000-0001-6122-8314 ; 0000-0001-7985-6706 ; 0000-0001-5953-4902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11053-019-09603-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918336435?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,782,786,21395,27931,27932,28255,33751,41495,42564,43812,51326,64392,64396,72476</link.rule.ids></links><search><creatorcontrib>Zhang, Shike</creatorcontrib><creatorcontrib>Bui, Xuan-Nam</creatorcontrib><creatorcontrib>Trung, Nguyen-Thoi</creatorcontrib><creatorcontrib>Nguyen, Hoang</creatorcontrib><creatorcontrib>Bui, Hoang-Bac</creatorcontrib><title>Prediction of Rock Size Distribution in Mine Bench Blasting Using a Novel Ant Colony Optimization-Based Boosted Regression Tree Technique</title><title>Natural resources research (New York, N.Y.)</title><addtitle>Nat Resour Res</addtitle><addtitle>NAT RESOUR RES</addtitle><description>In this paper, we used artificial intelligence (AI) techniques to investigate the relation between the rock size distribution (RSD) and blasting parameters for rock fragmentation in quarries. Moreover, the ant colony optimization (ACO)–boosted regression tree (BRT) model, which is a novel AI technique for predicting RSD using the blasting parameters, is proposed based on the ACO and BRT algorithms. For predicting RSD, three well-developed models, namely the particle swarm optimization–adaptive neuro-fuzzy inference system (PSO–ANFIS), firefly algorithm (FFA)–ANFIS, and FFA–artificial neural network, were applied to the same dataset. Additionally, four benchmark AI techniques, i.e., support vector machine,
k
-nearest neighbors, principal component regression, and Gaussian process, and a conventional approach, i.e., the Kuz–Ram model, were employed for considering and predicting RSD. Using an image processing technique, the Split-Desktop software package was used to analyze the RSD of 136 blasting events at a quarry in Vietnam. Results were used as inputs, such as powder factor, explosive charge per delay, bench height, stemming length, and burden, and outputs, i.e., RSD, in this study. The novel scoring and color-intensity methods were used for visualizing several statistical criteria, including the correlation coefficient, mean absolute error, and root-mean-square error, to evaluate the model performance. Results indicate that the proposed ACO–BRT hybrid model yields higher RSD predictive accuracy than that obtained using any other model. The proposed model seems to be promising for optimizing the blasting parameters to increase the production efficiency while reducing the production costs.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Bench height</subject><subject>Blasting (explosive)</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fossil Fuels (incl. Carbon Capture)</subject><subject>Fuzzy logic</subject><subject>Gaussian process</subject><subject>Geography</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Heuristic methods</subject><subject>Image processing</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mineral Resources</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Production costs</subject><subject>Quarries</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Rocks</subject><subject>Science & Technology</subject><subject>Size distribution</subject><subject>Statistical analysis</subject><subject>Statistics for Engineering</subject><subject>Support vector machines</subject><subject>Sustainable Development</subject><issn>1520-7439</issn><issn>1573-8981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1vGyEQhlHVSE2d_IGekHqsSMHALnuMt_mS8qXEOSMWzzqkDriAWyX_oP86rLdKb1EuM6PhfWfgAaEvjB4wSuvviTEqOaGsIbSpKCfiA9plsuZENYp9HOopJbXgzSf0OaUHWkxcyV309zrCwtnsgsehxzfB_sS37hnwD5dydN1me-I8vnAe8Ay8vcezlUnZ-SW-S0M0-DL8hhU-9Bm3YRX8E75aZ_fons1gJjOTYIFnIaRc8g0sI6Q0TJ1HADwHe-_drw3soZ3erBLs_8sTdHd8NG9PyfnVyVl7eE4sZ00mUkhlu14aqqTqqwWvpOnBqq4rHcP6mouOT8VCGMZAKmCykao2vOuE4LUSfIK-jnPXMZS1KeuHsIm-rNTThinOK8FlUU1HlY0hpQi9Xkf3aOKTZlQPyPWIXBfkeotcD6O_jaY_0IU-WVdwwauxMC-fUJVYqrJogtT71a3LW5pt2PhcrHy0piL3S4j_3_DG9V4AwQ2liQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Zhang, Shike</creator><creator>Bui, Xuan-Nam</creator><creator>Trung, Nguyen-Thoi</creator><creator>Nguyen, Hoang</creator><creator>Bui, Hoang-Bac</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0001-6122-8314</orcidid><orcidid>https://orcid.org/0000-0001-7985-6706</orcidid><orcidid>https://orcid.org/0000-0001-5953-4902</orcidid></search><sort><creationdate>20200401</creationdate><title>Prediction of Rock Size Distribution in Mine Bench Blasting Using a Novel Ant Colony Optimization-Based Boosted Regression Tree Technique</title><author>Zhang, Shike ; Bui, Xuan-Nam ; Trung, Nguyen-Thoi ; Nguyen, Hoang ; Bui, Hoang-Bac</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5458cbf5a0858f6d365afec8bba08a1f734b324d4a11e58e159587a3bb4437843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Bench height</topic><topic>Blasting (explosive)</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fossil Fuels (incl. Carbon Capture)</topic><topic>Fuzzy logic</topic><topic>Gaussian process</topic><topic>Geography</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Heuristic methods</topic><topic>Image processing</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mineral Resources</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Production costs</topic><topic>Quarries</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Rocks</topic><topic>Science & Technology</topic><topic>Size distribution</topic><topic>Statistical analysis</topic><topic>Statistics for Engineering</topic><topic>Support vector machines</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shike</creatorcontrib><creatorcontrib>Bui, Xuan-Nam</creatorcontrib><creatorcontrib>Trung, Nguyen-Thoi</creatorcontrib><creatorcontrib>Nguyen, Hoang</creatorcontrib><creatorcontrib>Bui, Hoang-Bac</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Natural resources research (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shike</au><au>Bui, Xuan-Nam</au><au>Trung, Nguyen-Thoi</au><au>Nguyen, Hoang</au><au>Bui, Hoang-Bac</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Rock Size Distribution in Mine Bench Blasting Using a Novel Ant Colony Optimization-Based Boosted Regression Tree Technique</atitle><jtitle>Natural resources research (New York, N.Y.)</jtitle><stitle>Nat Resour Res</stitle><stitle>NAT RESOUR RES</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>29</volume><issue>2</issue><spage>867</spage><epage>886</epage><pages>867-886</pages><issn>1520-7439</issn><eissn>1573-8981</eissn><abstract>In this paper, we used artificial intelligence (AI) techniques to investigate the relation between the rock size distribution (RSD) and blasting parameters for rock fragmentation in quarries. Moreover, the ant colony optimization (ACO)–boosted regression tree (BRT) model, which is a novel AI technique for predicting RSD using the blasting parameters, is proposed based on the ACO and BRT algorithms. For predicting RSD, three well-developed models, namely the particle swarm optimization–adaptive neuro-fuzzy inference system (PSO–ANFIS), firefly algorithm (FFA)–ANFIS, and FFA–artificial neural network, were applied to the same dataset. Additionally, four benchmark AI techniques, i.e., support vector machine,
k
-nearest neighbors, principal component regression, and Gaussian process, and a conventional approach, i.e., the Kuz–Ram model, were employed for considering and predicting RSD. Using an image processing technique, the Split-Desktop software package was used to analyze the RSD of 136 blasting events at a quarry in Vietnam. Results were used as inputs, such as powder factor, explosive charge per delay, bench height, stemming length, and burden, and outputs, i.e., RSD, in this study. The novel scoring and color-intensity methods were used for visualizing several statistical criteria, including the correlation coefficient, mean absolute error, and root-mean-square error, to evaluate the model performance. Results indicate that the proposed ACO–BRT hybrid model yields higher RSD predictive accuracy than that obtained using any other model. The proposed model seems to be promising for optimizing the blasting parameters to increase the production efficiency while reducing the production costs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11053-019-09603-4</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6122-8314</orcidid><orcidid>https://orcid.org/0000-0001-7985-6706</orcidid><orcidid>https://orcid.org/0000-0001-5953-4902</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-7439 |
ispartof | Natural resources research (New York, N.Y.), 2020-04, Vol.29 (2), p.867-886 |
issn | 1520-7439 1573-8981 |
language | eng |
recordid | cdi_webofscience_primary_000520600500018 |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Adaptive systems Algorithms Ant colony optimization Artificial intelligence Artificial neural networks Bench height Blasting (explosive) Chemistry and Earth Sciences Computer Science Correlation coefficient Correlation coefficients Earth and Environmental Science Earth Sciences Fossil Fuels (incl. Carbon Capture) Fuzzy logic Gaussian process Geography Geology Geosciences, Multidisciplinary Heuristic methods Image processing Mathematical Modeling and Industrial Mathematics Mineral Resources Neural networks Optimization Original Paper Parameters Particle swarm optimization Physical Sciences Physics Production costs Quarries Regression analysis Regression models Rocks Science & Technology Size distribution Statistical analysis Statistics for Engineering Support vector machines Sustainable Development |
title | Prediction of Rock Size Distribution in Mine Bench Blasting Using a Novel Ant Colony Optimization-Based Boosted Regression Tree Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T01%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Rock%20Size%20Distribution%20in%20Mine%20Bench%20Blasting%20Using%20a%20Novel%20Ant%20Colony%20Optimization-Based%20Boosted%20Regression%20Tree%20Technique&rft.jtitle=Natural%20resources%20research%20(New%20York,%20N.Y.)&rft.au=Zhang,%20Shike&rft.date=2020-04-01&rft.volume=29&rft.issue=2&rft.spage=867&rft.epage=886&rft.pages=867-886&rft.issn=1520-7439&rft.eissn=1573-8981&rft_id=info:doi/10.1007/s11053-019-09603-4&rft_dat=%3Cproquest_webof%3E2918336435%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918336435&rft_id=info:pmid/&rfr_iscdi=true |