Prediction of Rock Size Distribution in Mine Bench Blasting Using a Novel Ant Colony Optimization-Based Boosted Regression Tree Technique

In this paper, we used artificial intelligence (AI) techniques to investigate the relation between the rock size distribution (RSD) and blasting parameters for rock fragmentation in quarries. Moreover, the ant colony optimization (ACO)–boosted regression tree (BRT) model, which is a novel AI techniq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural resources research (New York, N.Y.) N.Y.), 2020-04, Vol.29 (2), p.867-886
Hauptverfasser: Zhang, Shike, Bui, Xuan-Nam, Trung, Nguyen-Thoi, Nguyen, Hoang, Bui, Hoang-Bac
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 886
container_issue 2
container_start_page 867
container_title Natural resources research (New York, N.Y.)
container_volume 29
creator Zhang, Shike
Bui, Xuan-Nam
Trung, Nguyen-Thoi
Nguyen, Hoang
Bui, Hoang-Bac
description In this paper, we used artificial intelligence (AI) techniques to investigate the relation between the rock size distribution (RSD) and blasting parameters for rock fragmentation in quarries. Moreover, the ant colony optimization (ACO)–boosted regression tree (BRT) model, which is a novel AI technique for predicting RSD using the blasting parameters, is proposed based on the ACO and BRT algorithms. For predicting RSD, three well-developed models, namely the particle swarm optimization–adaptive neuro-fuzzy inference system (PSO–ANFIS), firefly algorithm (FFA)–ANFIS, and FFA–artificial neural network, were applied to the same dataset. Additionally, four benchmark AI techniques, i.e., support vector machine, k -nearest neighbors, principal component regression, and Gaussian process, and a conventional approach, i.e., the Kuz–Ram model, were employed for considering and predicting RSD. Using an image processing technique, the Split-Desktop software package was used to analyze the RSD of 136 blasting events at a quarry in Vietnam. Results were used as inputs, such as powder factor, explosive charge per delay, bench height, stemming length, and burden, and outputs, i.e., RSD, in this study. The novel scoring and color-intensity methods were used for visualizing several statistical criteria, including the correlation coefficient, mean absolute error, and root-mean-square error, to evaluate the model performance. Results indicate that the proposed ACO–BRT hybrid model yields higher RSD predictive accuracy than that obtained using any other model. The proposed model seems to be promising for optimizing the blasting parameters to increase the production efficiency while reducing the production costs.
doi_str_mv 10.1007/s11053-019-09603-4
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000520600500018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918336435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5458cbf5a0858f6d365afec8bba08a1f734b324d4a11e58e159587a3bb4437843</originalsourceid><addsrcrecordid>eNqNkU1vGyEQhlHVSE2d_IGekHqsSMHALnuMt_mS8qXEOSMWzzqkDriAWyX_oP86rLdKb1EuM6PhfWfgAaEvjB4wSuvviTEqOaGsIbSpKCfiA9plsuZENYp9HOopJbXgzSf0OaUHWkxcyV309zrCwtnsgsehxzfB_sS37hnwD5dydN1me-I8vnAe8Ay8vcezlUnZ-SW-S0M0-DL8hhU-9Bm3YRX8E75aZ_fons1gJjOTYIFnIaRc8g0sI6Q0TJ1HADwHe-_drw3soZ3erBLs_8sTdHd8NG9PyfnVyVl7eE4sZ00mUkhlu14aqqTqqwWvpOnBqq4rHcP6mouOT8VCGMZAKmCykao2vOuE4LUSfIK-jnPXMZS1KeuHsIm-rNTThinOK8FlUU1HlY0hpQi9Xkf3aOKTZlQPyPWIXBfkeotcD6O_jaY_0IU-WVdwwauxMC-fUJVYqrJogtT71a3LW5pt2PhcrHy0piL3S4j_3_DG9V4AwQ2liQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918336435</pqid></control><display><type>article</type><title>Prediction of Rock Size Distribution in Mine Bench Blasting Using a Novel Ant Colony Optimization-Based Boosted Regression Tree Technique</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Zhang, Shike ; Bui, Xuan-Nam ; Trung, Nguyen-Thoi ; Nguyen, Hoang ; Bui, Hoang-Bac</creator><creatorcontrib>Zhang, Shike ; Bui, Xuan-Nam ; Trung, Nguyen-Thoi ; Nguyen, Hoang ; Bui, Hoang-Bac</creatorcontrib><description>In this paper, we used artificial intelligence (AI) techniques to investigate the relation between the rock size distribution (RSD) and blasting parameters for rock fragmentation in quarries. Moreover, the ant colony optimization (ACO)–boosted regression tree (BRT) model, which is a novel AI technique for predicting RSD using the blasting parameters, is proposed based on the ACO and BRT algorithms. For predicting RSD, three well-developed models, namely the particle swarm optimization–adaptive neuro-fuzzy inference system (PSO–ANFIS), firefly algorithm (FFA)–ANFIS, and FFA–artificial neural network, were applied to the same dataset. Additionally, four benchmark AI techniques, i.e., support vector machine, k -nearest neighbors, principal component regression, and Gaussian process, and a conventional approach, i.e., the Kuz–Ram model, were employed for considering and predicting RSD. Using an image processing technique, the Split-Desktop software package was used to analyze the RSD of 136 blasting events at a quarry in Vietnam. Results were used as inputs, such as powder factor, explosive charge per delay, bench height, stemming length, and burden, and outputs, i.e., RSD, in this study. The novel scoring and color-intensity methods were used for visualizing several statistical criteria, including the correlation coefficient, mean absolute error, and root-mean-square error, to evaluate the model performance. Results indicate that the proposed ACO–BRT hybrid model yields higher RSD predictive accuracy than that obtained using any other model. The proposed model seems to be promising for optimizing the blasting parameters to increase the production efficiency while reducing the production costs.</description><identifier>ISSN: 1520-7439</identifier><identifier>EISSN: 1573-8981</identifier><identifier>DOI: 10.1007/s11053-019-09603-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive systems ; Algorithms ; Ant colony optimization ; Artificial intelligence ; Artificial neural networks ; Bench height ; Blasting (explosive) ; Chemistry and Earth Sciences ; Computer Science ; Correlation coefficient ; Correlation coefficients ; Earth and Environmental Science ; Earth Sciences ; Fossil Fuels (incl. Carbon Capture) ; Fuzzy logic ; Gaussian process ; Geography ; Geology ; Geosciences, Multidisciplinary ; Heuristic methods ; Image processing ; Mathematical Modeling and Industrial Mathematics ; Mineral Resources ; Neural networks ; Optimization ; Original Paper ; Parameters ; Particle swarm optimization ; Physical Sciences ; Physics ; Production costs ; Quarries ; Regression analysis ; Regression models ; Rocks ; Science &amp; Technology ; Size distribution ; Statistical analysis ; Statistics for Engineering ; Support vector machines ; Sustainable Development</subject><ispartof>Natural resources research (New York, N.Y.), 2020-04, Vol.29 (2), p.867-886</ispartof><rights>International Association for Mathematical Geosciences 2019</rights><rights>International Association for Mathematical Geosciences 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>19</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000520600500018</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-5458cbf5a0858f6d365afec8bba08a1f734b324d4a11e58e159587a3bb4437843</citedby><cites>FETCH-LOGICAL-c319t-5458cbf5a0858f6d365afec8bba08a1f734b324d4a11e58e159587a3bb4437843</cites><orcidid>0000-0001-6122-8314 ; 0000-0001-7985-6706 ; 0000-0001-5953-4902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11053-019-09603-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918336435?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,782,786,21395,27931,27932,28255,33751,41495,42564,43812,51326,64392,64396,72476</link.rule.ids></links><search><creatorcontrib>Zhang, Shike</creatorcontrib><creatorcontrib>Bui, Xuan-Nam</creatorcontrib><creatorcontrib>Trung, Nguyen-Thoi</creatorcontrib><creatorcontrib>Nguyen, Hoang</creatorcontrib><creatorcontrib>Bui, Hoang-Bac</creatorcontrib><title>Prediction of Rock Size Distribution in Mine Bench Blasting Using a Novel Ant Colony Optimization-Based Boosted Regression Tree Technique</title><title>Natural resources research (New York, N.Y.)</title><addtitle>Nat Resour Res</addtitle><addtitle>NAT RESOUR RES</addtitle><description>In this paper, we used artificial intelligence (AI) techniques to investigate the relation between the rock size distribution (RSD) and blasting parameters for rock fragmentation in quarries. Moreover, the ant colony optimization (ACO)–boosted regression tree (BRT) model, which is a novel AI technique for predicting RSD using the blasting parameters, is proposed based on the ACO and BRT algorithms. For predicting RSD, three well-developed models, namely the particle swarm optimization–adaptive neuro-fuzzy inference system (PSO–ANFIS), firefly algorithm (FFA)–ANFIS, and FFA–artificial neural network, were applied to the same dataset. Additionally, four benchmark AI techniques, i.e., support vector machine, k -nearest neighbors, principal component regression, and Gaussian process, and a conventional approach, i.e., the Kuz–Ram model, were employed for considering and predicting RSD. Using an image processing technique, the Split-Desktop software package was used to analyze the RSD of 136 blasting events at a quarry in Vietnam. Results were used as inputs, such as powder factor, explosive charge per delay, bench height, stemming length, and burden, and outputs, i.e., RSD, in this study. The novel scoring and color-intensity methods were used for visualizing several statistical criteria, including the correlation coefficient, mean absolute error, and root-mean-square error, to evaluate the model performance. Results indicate that the proposed ACO–BRT hybrid model yields higher RSD predictive accuracy than that obtained using any other model. The proposed model seems to be promising for optimizing the blasting parameters to increase the production efficiency while reducing the production costs.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Bench height</subject><subject>Blasting (explosive)</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fossil Fuels (incl. Carbon Capture)</subject><subject>Fuzzy logic</subject><subject>Gaussian process</subject><subject>Geography</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Heuristic methods</subject><subject>Image processing</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mineral Resources</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Production costs</subject><subject>Quarries</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Rocks</subject><subject>Science &amp; Technology</subject><subject>Size distribution</subject><subject>Statistical analysis</subject><subject>Statistics for Engineering</subject><subject>Support vector machines</subject><subject>Sustainable Development</subject><issn>1520-7439</issn><issn>1573-8981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1vGyEQhlHVSE2d_IGekHqsSMHALnuMt_mS8qXEOSMWzzqkDriAWyX_oP86rLdKb1EuM6PhfWfgAaEvjB4wSuvviTEqOaGsIbSpKCfiA9plsuZENYp9HOopJbXgzSf0OaUHWkxcyV309zrCwtnsgsehxzfB_sS37hnwD5dydN1me-I8vnAe8Ay8vcezlUnZ-SW-S0M0-DL8hhU-9Bm3YRX8E75aZ_fons1gJjOTYIFnIaRc8g0sI6Q0TJ1HADwHe-_drw3soZ3erBLs_8sTdHd8NG9PyfnVyVl7eE4sZ00mUkhlu14aqqTqqwWvpOnBqq4rHcP6mouOT8VCGMZAKmCykao2vOuE4LUSfIK-jnPXMZS1KeuHsIm-rNTThinOK8FlUU1HlY0hpQi9Xkf3aOKTZlQPyPWIXBfkeotcD6O_jaY_0IU-WVdwwauxMC-fUJVYqrJogtT71a3LW5pt2PhcrHy0piL3S4j_3_DG9V4AwQ2liQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Zhang, Shike</creator><creator>Bui, Xuan-Nam</creator><creator>Trung, Nguyen-Thoi</creator><creator>Nguyen, Hoang</creator><creator>Bui, Hoang-Bac</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0001-6122-8314</orcidid><orcidid>https://orcid.org/0000-0001-7985-6706</orcidid><orcidid>https://orcid.org/0000-0001-5953-4902</orcidid></search><sort><creationdate>20200401</creationdate><title>Prediction of Rock Size Distribution in Mine Bench Blasting Using a Novel Ant Colony Optimization-Based Boosted Regression Tree Technique</title><author>Zhang, Shike ; Bui, Xuan-Nam ; Trung, Nguyen-Thoi ; Nguyen, Hoang ; Bui, Hoang-Bac</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5458cbf5a0858f6d365afec8bba08a1f734b324d4a11e58e159587a3bb4437843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Bench height</topic><topic>Blasting (explosive)</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fossil Fuels (incl. Carbon Capture)</topic><topic>Fuzzy logic</topic><topic>Gaussian process</topic><topic>Geography</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Heuristic methods</topic><topic>Image processing</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mineral Resources</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Production costs</topic><topic>Quarries</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Rocks</topic><topic>Science &amp; Technology</topic><topic>Size distribution</topic><topic>Statistical analysis</topic><topic>Statistics for Engineering</topic><topic>Support vector machines</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shike</creatorcontrib><creatorcontrib>Bui, Xuan-Nam</creatorcontrib><creatorcontrib>Trung, Nguyen-Thoi</creatorcontrib><creatorcontrib>Nguyen, Hoang</creatorcontrib><creatorcontrib>Bui, Hoang-Bac</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Natural resources research (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shike</au><au>Bui, Xuan-Nam</au><au>Trung, Nguyen-Thoi</au><au>Nguyen, Hoang</au><au>Bui, Hoang-Bac</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Rock Size Distribution in Mine Bench Blasting Using a Novel Ant Colony Optimization-Based Boosted Regression Tree Technique</atitle><jtitle>Natural resources research (New York, N.Y.)</jtitle><stitle>Nat Resour Res</stitle><stitle>NAT RESOUR RES</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>29</volume><issue>2</issue><spage>867</spage><epage>886</epage><pages>867-886</pages><issn>1520-7439</issn><eissn>1573-8981</eissn><abstract>In this paper, we used artificial intelligence (AI) techniques to investigate the relation between the rock size distribution (RSD) and blasting parameters for rock fragmentation in quarries. Moreover, the ant colony optimization (ACO)–boosted regression tree (BRT) model, which is a novel AI technique for predicting RSD using the blasting parameters, is proposed based on the ACO and BRT algorithms. For predicting RSD, three well-developed models, namely the particle swarm optimization–adaptive neuro-fuzzy inference system (PSO–ANFIS), firefly algorithm (FFA)–ANFIS, and FFA–artificial neural network, were applied to the same dataset. Additionally, four benchmark AI techniques, i.e., support vector machine, k -nearest neighbors, principal component regression, and Gaussian process, and a conventional approach, i.e., the Kuz–Ram model, were employed for considering and predicting RSD. Using an image processing technique, the Split-Desktop software package was used to analyze the RSD of 136 blasting events at a quarry in Vietnam. Results were used as inputs, such as powder factor, explosive charge per delay, bench height, stemming length, and burden, and outputs, i.e., RSD, in this study. The novel scoring and color-intensity methods were used for visualizing several statistical criteria, including the correlation coefficient, mean absolute error, and root-mean-square error, to evaluate the model performance. Results indicate that the proposed ACO–BRT hybrid model yields higher RSD predictive accuracy than that obtained using any other model. The proposed model seems to be promising for optimizing the blasting parameters to increase the production efficiency while reducing the production costs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11053-019-09603-4</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6122-8314</orcidid><orcidid>https://orcid.org/0000-0001-7985-6706</orcidid><orcidid>https://orcid.org/0000-0001-5953-4902</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-7439
ispartof Natural resources research (New York, N.Y.), 2020-04, Vol.29 (2), p.867-886
issn 1520-7439
1573-8981
language eng
recordid cdi_webofscience_primary_000520600500018
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; ProQuest Central UK/Ireland; ProQuest Central
subjects Adaptive systems
Algorithms
Ant colony optimization
Artificial intelligence
Artificial neural networks
Bench height
Blasting (explosive)
Chemistry and Earth Sciences
Computer Science
Correlation coefficient
Correlation coefficients
Earth and Environmental Science
Earth Sciences
Fossil Fuels (incl. Carbon Capture)
Fuzzy logic
Gaussian process
Geography
Geology
Geosciences, Multidisciplinary
Heuristic methods
Image processing
Mathematical Modeling and Industrial Mathematics
Mineral Resources
Neural networks
Optimization
Original Paper
Parameters
Particle swarm optimization
Physical Sciences
Physics
Production costs
Quarries
Regression analysis
Regression models
Rocks
Science & Technology
Size distribution
Statistical analysis
Statistics for Engineering
Support vector machines
Sustainable Development
title Prediction of Rock Size Distribution in Mine Bench Blasting Using a Novel Ant Colony Optimization-Based Boosted Regression Tree Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T01%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Rock%20Size%20Distribution%20in%20Mine%20Bench%20Blasting%20Using%20a%20Novel%20Ant%20Colony%20Optimization-Based%20Boosted%20Regression%20Tree%20Technique&rft.jtitle=Natural%20resources%20research%20(New%20York,%20N.Y.)&rft.au=Zhang,%20Shike&rft.date=2020-04-01&rft.volume=29&rft.issue=2&rft.spage=867&rft.epage=886&rft.pages=867-886&rft.issn=1520-7439&rft.eissn=1573-8981&rft_id=info:doi/10.1007/s11053-019-09603-4&rft_dat=%3Cproquest_webof%3E2918336435%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918336435&rft_id=info:pmid/&rfr_iscdi=true