Systematic analysis of ovarian cancer platinum-resistance mechanisms via text mining

Background Platinum resistance is an important cause of clinical recurrence and death for ovarian cancer. This study tries to systematically explore the molecular mechanisms for platinum resistance in ovarian cancer and identify regulatory genes and pathways via text mining and other methods. Method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ovarian research 2020-03, Vol.13 (1), p.27-27, Article 27
Hauptverfasser: Li, Haixia, Li, Jinghua, Gao, Wanli, Zhen, Cheng, Feng, Limin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Platinum resistance is an important cause of clinical recurrence and death for ovarian cancer. This study tries to systematically explore the molecular mechanisms for platinum resistance in ovarian cancer and identify regulatory genes and pathways via text mining and other methods. Methods Genes in abstracts of associated literatures were identified. Gene ontology and protein-protein interaction (PPI) network analysis were performed. Then co-occurrence between genes and ovarian cancer subtypes were carried out followed by cluster analysis. Results Genes with highest frequencies are mostly involved in DNA repair, apoptosis, metal transport and drug detoxification, which are closely related to platinum resistance. Gene ontology analysis confirms this result. Some proteins such as TP53, HSP90, ESR1, AKT1, BRCA1, EGFR and CTNNB1 work as hub nodes in PPI network. According to cluster analysis, specific genes were highlighted in each subtype of ovarian cancer, indicating that various subtypes may have different resistance mechanisms respectively. Conclusions Platinum resistance in ovarian cancer involves complicated signaling pathways and different subtypes may have specific mechanisms. Text mining, combined with other bio-information methods, is an effective way for systematic analysis.
ISSN:1757-2215
1757-2215
DOI:10.1186/s13048-020-00627-6