Biodegradation of plastic monomer 2,6-dimethylphenol by Mycobacterium neoaurum B5-4

2,6-Dimethylphenol (2,6-DMP), an important chemical intermediate and the monomer of plastic polyphenylene oxide, is widely used in chemical and plastics industry. However, the pollution problem of 2,6-DMP residues is becoming increasingly serious, which is harmful to some aquatic animals. Microbial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2020-03, Vol.258, p.113793, Article 113793
Hauptverfasser: Ji, Junbin, Zhang, Yanting, Liu, Yongchuang, Zhu, Pingping, Yan, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:2,6-Dimethylphenol (2,6-DMP), an important chemical intermediate and the monomer of plastic polyphenylene oxide, is widely used in chemical and plastics industry. However, the pollution problem of 2,6-DMP residues is becoming increasingly serious, which is harmful to some aquatic animals. Microbial degradation provided an effective approach to eliminate DMPs in nature, which is considered as a prospective way to remediate DMPs-contaminated environments. But the 2,6-DMP-degrading bacteria is not available and the molecular mechanism of 2,6-DMP degradation is unclear as well. Here, a 2,6-DMP-degrading bacterium named B5-4 was isolated and identified as Mycobacterium neoaurum. M. neoaurum B5-4 could utilize 2,6-DMP as the sole carbon source for growth. Furthermore, M. neoaurum B5-4 could degrade 2,6-DMP with concentrations ranging from 1 to 500 mg L−1. Six intermediate metabolites of 2,6-DMP were identified and a metabolic pathway of 2,6-DMP in M. neoaurum B5-4 was proposed, in which 2,6-DMP was initially converted to 2,6-dimethyl-hydroquinone and 2,6-dimethyl-3-hydroxy-hydroquinone by two consecutive hydroxylations at C-4 and γ position; 2,6-dimethyl-3-hydroxy-hydroquinone was then subjected to aromatic ring ortho-cleavage to produce 2,4-dimethyl-3-hydroxymuconic acid, which was further transformed to citraconate, and subsequently into TCA cycle. In addition, toxicity bioassay of 2,6-DMP in water using zebrafish indicates that 2,6-DMP is toxic to zebrafish and M. neoaurum B5-4 could effectively eliminate 2,6-DMP in water to protect zebrafish from 2,6-DMP-induced death. This work provides a potential strain for bioremediation of 2,6-DMP-contaminated environments and lays a foundation for elucidating the molecular mechanism and genetic determinants of 2,6-DMP degradation. [Display omitted] •A Mycobacterium neoaurum B5-4 capable of degrading 2,6-DMP was isolated.•Six intermediate metabolites of 2,6-DMP were identified.•A metabolic pathway of 2,6-DMP in strain B5-4 was proposed.•2,6-DMP is toxic to zebrafish.•Strain B5-4 could effectively eliminate 2,6-DMP in water to protect zebrafish from 2,6-DMP-induced death.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2019.113793