Cooperative Management for PV/ESS-Enabled Electric Vehicle Charging Stations: A Multiagent Deep Reinforcement Learning Approach

This article proposes a novel multiagent deep reinforcement learning method for the energy management of distributed electric vehicle charging stations with a solar photovoltaic system and energy storage system. In the literature, the conventional method is to calculate the optimal electric vehicle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2020-05, Vol.16 (5), p.3493-3503
Hauptverfasser: Shin, MyungJae, Choi, Dae-Hyun, Kim, Joongheon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3503
container_issue 5
container_start_page 3493
container_title IEEE transactions on industrial informatics
container_volume 16
creator Shin, MyungJae
Choi, Dae-Hyun
Kim, Joongheon
description This article proposes a novel multiagent deep reinforcement learning method for the energy management of distributed electric vehicle charging stations with a solar photovoltaic system and energy storage system. In the literature, the conventional method is to calculate the optimal electric vehicle charging schedule in a centralized manner. However, in general, the centralized approach is not realistic under certain environments where the system operators for multiple electric vehicle charging stations handle dynamically varying data, such as the status of the energy storage system and electric vehicle-related information. Therefore, this article proposes a method that can compute the scheduling solutions of multiple electric vehicle charging stations in a distributed manner while handling run-time time-varying dynamic data. As shown in the data-intensive performance evaluation, it can be observed that the proposed method achieves a desirable performance in terms of reducing the operation costs of electric vehicle charging stations.
doi_str_mv 10.1109/TII.2019.2944183
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000519588700058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8851270</ieee_id><sourcerecordid>2358912906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-741070aba51f96ed7ab982a266a3d6b29209e1a2c4ca78dfa0f811a9f31e33703</originalsourceid><addsrcrecordid>eNqNkE1v00AQhi0EEqVwR-KyEkfkdGbXH7vcIjdApFQgUnq1xptxspW7NmsHxIm_zlqu4Mpp5vA-72ieJHmNsEIEc3W73a4koFlJk2Wo1ZPkAk2GKUAOT-Oe55gqCep58mIc7wFUCcpcJL-rvh840OR-sLghT0d-YD-Jtg_iy93VZr9PN56ajg9i07GdgrPijk_OdiyqE4Wj80exnyLf-_G9WIubcze52BI7rpkH8ZWdj2V2qd0xBT8j62EIPdnTy-RZS93Irx7nZfLtw-a2-pTuPn_cVutdapXSU1pmCCVQQzm2puBDSY3RkmRRkDoUjTQSDCNJm1kq9aElaDUimVYhq_nVy-Tt0hvPfj_zONX3_Tn4eLKWKtcGpYEipmBJ2dCPY-C2HoJ7oPCrRqhnzXXUXM-a60fNEXm3ID-56dvROvaW_2IQ9aPJtS7nTce0_v905RavVX_2U0TfLKhj_odonaOM__0BINSZ7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358912906</pqid></control><display><type>article</type><title>Cooperative Management for PV/ESS-Enabled Electric Vehicle Charging Stations: A Multiagent Deep Reinforcement Learning Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Shin, MyungJae ; Choi, Dae-Hyun ; Kim, Joongheon</creator><creatorcontrib>Shin, MyungJae ; Choi, Dae-Hyun ; Kim, Joongheon</creatorcontrib><description>This article proposes a novel multiagent deep reinforcement learning method for the energy management of distributed electric vehicle charging stations with a solar photovoltaic system and energy storage system. In the literature, the conventional method is to calculate the optimal electric vehicle charging schedule in a centralized manner. However, in general, the centralized approach is not realistic under certain environments where the system operators for multiple electric vehicle charging stations handle dynamically varying data, such as the status of the energy storage system and electric vehicle-related information. Therefore, this article proposes a method that can compute the scheduling solutions of multiple electric vehicle charging stations in a distributed manner while handling run-time time-varying dynamic data. As shown in the data-intensive performance evaluation, it can be observed that the proposed method achieves a desirable performance in terms of reducing the operation costs of electric vehicle charging stations.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2019.2944183</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Automation &amp; Control Systems ; Companies ; Computer Science ; Computer Science, Interdisciplinary Applications ; Electric vehicle charging ; Electric vehicles ; Energy management ; Energy storage ; Engineering ; Engineering, Industrial ; Machine learning ; Multi-agent systems ; Multiagent systems ; neural networks ; Optimization ; Performance evaluation ; Photovoltaic cells ; Planning ; Reinforcement learning ; Schedules ; scheduling algorithms ; Science &amp; Technology ; Stations ; Technology</subject><ispartof>IEEE transactions on industrial informatics, 2020-05, Vol.16 (5), p.3493-3503</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>114</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000519588700058</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c338t-741070aba51f96ed7ab982a266a3d6b29209e1a2c4ca78dfa0f811a9f31e33703</citedby><cites>FETCH-LOGICAL-c338t-741070aba51f96ed7ab982a266a3d6b29209e1a2c4ca78dfa0f811a9f31e33703</cites><orcidid>0000-0001-6505-1448 ; 0000-0002-1794-6076 ; 0000-0002-9248-9522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8851270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,28255,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8851270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shin, MyungJae</creatorcontrib><creatorcontrib>Choi, Dae-Hyun</creatorcontrib><creatorcontrib>Kim, Joongheon</creatorcontrib><title>Cooperative Management for PV/ESS-Enabled Electric Vehicle Charging Stations: A Multiagent Deep Reinforcement Learning Approach</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><addtitle>IEEE T IND INFORM</addtitle><description>This article proposes a novel multiagent deep reinforcement learning method for the energy management of distributed electric vehicle charging stations with a solar photovoltaic system and energy storage system. In the literature, the conventional method is to calculate the optimal electric vehicle charging schedule in a centralized manner. However, in general, the centralized approach is not realistic under certain environments where the system operators for multiple electric vehicle charging stations handle dynamically varying data, such as the status of the energy storage system and electric vehicle-related information. Therefore, this article proposes a method that can compute the scheduling solutions of multiple electric vehicle charging stations in a distributed manner while handling run-time time-varying dynamic data. As shown in the data-intensive performance evaluation, it can be observed that the proposed method achieves a desirable performance in terms of reducing the operation costs of electric vehicle charging stations.</description><subject>Automation &amp; Control Systems</subject><subject>Companies</subject><subject>Computer Science</subject><subject>Computer Science, Interdisciplinary Applications</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Engineering</subject><subject>Engineering, Industrial</subject><subject>Machine learning</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>neural networks</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Photovoltaic cells</subject><subject>Planning</subject><subject>Reinforcement learning</subject><subject>Schedules</subject><subject>scheduling algorithms</subject><subject>Science &amp; Technology</subject><subject>Stations</subject><subject>Technology</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkE1v00AQhi0EEqVwR-KyEkfkdGbXH7vcIjdApFQgUnq1xptxspW7NmsHxIm_zlqu4Mpp5vA-72ieJHmNsEIEc3W73a4koFlJk2Wo1ZPkAk2GKUAOT-Oe55gqCep58mIc7wFUCcpcJL-rvh840OR-sLghT0d-YD-Jtg_iy93VZr9PN56ajg9i07GdgrPijk_OdiyqE4Wj80exnyLf-_G9WIubcze52BI7rpkH8ZWdj2V2qd0xBT8j62EIPdnTy-RZS93Irx7nZfLtw-a2-pTuPn_cVutdapXSU1pmCCVQQzm2puBDSY3RkmRRkDoUjTQSDCNJm1kq9aElaDUimVYhq_nVy-Tt0hvPfj_zONX3_Tn4eLKWKtcGpYEipmBJ2dCPY-C2HoJ7oPCrRqhnzXXUXM-a60fNEXm3ID-56dvROvaW_2IQ9aPJtS7nTce0_v905RavVX_2U0TfLKhj_odonaOM__0BINSZ7A</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Shin, MyungJae</creator><creator>Choi, Dae-Hyun</creator><creator>Kim, Joongheon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6505-1448</orcidid><orcidid>https://orcid.org/0000-0002-1794-6076</orcidid><orcidid>https://orcid.org/0000-0002-9248-9522</orcidid></search><sort><creationdate>20200501</creationdate><title>Cooperative Management for PV/ESS-Enabled Electric Vehicle Charging Stations: A Multiagent Deep Reinforcement Learning Approach</title><author>Shin, MyungJae ; Choi, Dae-Hyun ; Kim, Joongheon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-741070aba51f96ed7ab982a266a3d6b29209e1a2c4ca78dfa0f811a9f31e33703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation &amp; Control Systems</topic><topic>Companies</topic><topic>Computer Science</topic><topic>Computer Science, Interdisciplinary Applications</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Engineering</topic><topic>Engineering, Industrial</topic><topic>Machine learning</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>neural networks</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Photovoltaic cells</topic><topic>Planning</topic><topic>Reinforcement learning</topic><topic>Schedules</topic><topic>scheduling algorithms</topic><topic>Science &amp; Technology</topic><topic>Stations</topic><topic>Technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Shin, MyungJae</creatorcontrib><creatorcontrib>Choi, Dae-Hyun</creatorcontrib><creatorcontrib>Kim, Joongheon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shin, MyungJae</au><au>Choi, Dae-Hyun</au><au>Kim, Joongheon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooperative Management for PV/ESS-Enabled Electric Vehicle Charging Stations: A Multiagent Deep Reinforcement Learning Approach</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><stitle>IEEE T IND INFORM</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>16</volume><issue>5</issue><spage>3493</spage><epage>3503</epage><pages>3493-3503</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>This article proposes a novel multiagent deep reinforcement learning method for the energy management of distributed electric vehicle charging stations with a solar photovoltaic system and energy storage system. In the literature, the conventional method is to calculate the optimal electric vehicle charging schedule in a centralized manner. However, in general, the centralized approach is not realistic under certain environments where the system operators for multiple electric vehicle charging stations handle dynamically varying data, such as the status of the energy storage system and electric vehicle-related information. Therefore, this article proposes a method that can compute the scheduling solutions of multiple electric vehicle charging stations in a distributed manner while handling run-time time-varying dynamic data. As shown in the data-intensive performance evaluation, it can be observed that the proposed method achieves a desirable performance in terms of reducing the operation costs of electric vehicle charging stations.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TII.2019.2944183</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6505-1448</orcidid><orcidid>https://orcid.org/0000-0002-1794-6076</orcidid><orcidid>https://orcid.org/0000-0002-9248-9522</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2020-05, Vol.16 (5), p.3493-3503
issn 1551-3203
1941-0050
language eng
recordid cdi_webofscience_primary_000519588700058
source IEEE Electronic Library (IEL)
subjects Automation & Control Systems
Companies
Computer Science
Computer Science, Interdisciplinary Applications
Electric vehicle charging
Electric vehicles
Energy management
Energy storage
Engineering
Engineering, Industrial
Machine learning
Multi-agent systems
Multiagent systems
neural networks
Optimization
Performance evaluation
Photovoltaic cells
Planning
Reinforcement learning
Schedules
scheduling algorithms
Science & Technology
Stations
Technology
title Cooperative Management for PV/ESS-Enabled Electric Vehicle Charging Stations: A Multiagent Deep Reinforcement Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T06%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooperative%20Management%20for%20PV/ESS-Enabled%20Electric%20Vehicle%20Charging%20Stations:%20A%20Multiagent%20Deep%20Reinforcement%20Learning%20Approach&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Shin,%20MyungJae&rft.date=2020-05-01&rft.volume=16&rft.issue=5&rft.spage=3493&rft.epage=3503&rft.pages=3493-3503&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2019.2944183&rft_dat=%3Cproquest_RIE%3E2358912906%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358912906&rft_id=info:pmid/&rft_ieee_id=8851270&rfr_iscdi=true