Creep characteristics and prediction of creep failure of rock discontinuities under shearing conditions
Shear creep is one of the most important mechanical behaviors of rock discontinuities. The creep mechanism and prediction of starting point of the accelerating creep stage are vital for establishing the creep model and predicting creep failure. In this study, a series of multi-step creep tests are c...
Gespeichert in:
Veröffentlicht in: | International journal of earth sciences : Geologische Rundschau 2020-04, Vol.109 (3), p.945-958 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 958 |
---|---|
container_issue | 3 |
container_start_page | 945 |
container_title | International journal of earth sciences : Geologische Rundschau |
container_volume | 109 |
creator | Wang, Zhen Gu, Linlin Zhang, Qingzhao Yue, Songlin Zhang, Guokai |
description | Shear creep is one of the most important mechanical behaviors of rock discontinuities. The creep mechanism and prediction of starting point of the accelerating creep stage are vital for establishing the creep model and predicting creep failure. In this study, a series of multi-step creep tests are conducted. The three creep stages of shear creep tests are investigated in detail, and a method for predicting the accelerating creep stage is proposed. Distinct nonlinear and local fluctuations caused by cracking are observed in the creep curve. To describe the transition creep stage and steady creep stage, an empirical creep model is established, and the creep characteristics related to the joint roughness coefficient (JRC) and the normal stress are explored in detail using the model’s parameters. The creep process can be described as involving the JRC resistance weakening and frictional resistance compensation, and a model also established to describe this process. The frictional resistance cannot compensate for the loss of JRC resistance; consequently, creep failure occurs. The starting point of the accelerating creep stage can be predicted by combining the JRC weakening and frictional mobilization model and the empirical creep model. A new method for determining long-term strength is also proposed based on the relationships between the starting point creep deformation and the shear creep stress. |
doi_str_mv | 10.1007/s00531-020-01842-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000519506300001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395310190</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-15d33cffe29aaa0877b85475664f069ece4f56cf6d59156fca25487537e229203</originalsourceid><addsrcrecordid>eNqNkMtOxSAQhhujidcXcEXi0lQHKL0sTeMtMXGja8Khg3I8QgUa49tLrdGdccVk-L-B-YrimMIZBWjOI4DgtAQGJdC2YmW7VezRijclZzXb_qlFtVvsx7gGmBt0r3jqA-JI9LMKSicMNiarI1FuIGPAwepkvSPeEP2VM8pupoBzI3j9QgYbtXfJuskmi5FMbsBA4jOqYN0TyXeDnSfEw2LHqE3Eo-_zoHi8unzob8q7--vb_uKuVLxiqaRi4Fwbg6xTSkHbNKtWVI2o68pA3aHGyoham3oQHRW10Sqv1DaCN8hYx4AfFCfL3DH4twljkms_BZeflIx32RHQbk6xJaWDjzGgkWOwryp8SApyFioXoTILlV9CZZuhdoHeceVN1Badxh8QMkA7ATXPFdDeJjUv3vvJpYye_h_Nab6k4zhbxPC7wx_f-wRmoppL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395310190</pqid></control><display><type>article</type><title>Creep characteristics and prediction of creep failure of rock discontinuities under shearing conditions</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Wang, Zhen ; Gu, Linlin ; Zhang, Qingzhao ; Yue, Songlin ; Zhang, Guokai</creator><creatorcontrib>Wang, Zhen ; Gu, Linlin ; Zhang, Qingzhao ; Yue, Songlin ; Zhang, Guokai</creatorcontrib><description>Shear creep is one of the most important mechanical behaviors of rock discontinuities. The creep mechanism and prediction of starting point of the accelerating creep stage are vital for establishing the creep model and predicting creep failure. In this study, a series of multi-step creep tests are conducted. The three creep stages of shear creep tests are investigated in detail, and a method for predicting the accelerating creep stage is proposed. Distinct nonlinear and local fluctuations caused by cracking are observed in the creep curve. To describe the transition creep stage and steady creep stage, an empirical creep model is established, and the creep characteristics related to the joint roughness coefficient (JRC) and the normal stress are explored in detail using the model’s parameters. The creep process can be described as involving the JRC resistance weakening and frictional resistance compensation, and a model also established to describe this process. The frictional resistance cannot compensate for the loss of JRC resistance; consequently, creep failure occurs. The starting point of the accelerating creep stage can be predicted by combining the JRC weakening and frictional mobilization model and the empirical creep model. A new method for determining long-term strength is also proposed based on the relationships between the starting point creep deformation and the shear creep stress.</description><identifier>ISSN: 1437-3254</identifier><identifier>EISSN: 1437-3262</identifier><identifier>DOI: 10.1007/s00531-020-01842-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cracking (corrosion) ; Creep strength ; Creep tests ; Deformation ; Discontinuity ; Earth and Environmental Science ; Earth Sciences ; Friction resistance ; Geochemistry ; Geology ; Geophysics/Geodesy ; Geosciences, Multidisciplinary ; Mechanical properties ; Mineral Resources ; Original Paper ; Physical Sciences ; Process parameters ; Rocks ; Roughness ; Roughness coefficient ; Science & Technology ; Sedimentology ; Shear ; Shear creep ; Shearing ; Solifluction ; Structural Geology</subject><ispartof>International journal of earth sciences : Geologische Rundschau, 2020-04, Vol.109 (3), p.945-958</ispartof><rights>Geologische Vereinigung e.V. (GV) 2020</rights><rights>Geologische Vereinigung e.V. (GV) 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>30</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000519506300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a342t-15d33cffe29aaa0877b85475664f069ece4f56cf6d59156fca25487537e229203</citedby><cites>FETCH-LOGICAL-a342t-15d33cffe29aaa0877b85475664f069ece4f56cf6d59156fca25487537e229203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00531-020-01842-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00531-020-01842-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Gu, Linlin</creatorcontrib><creatorcontrib>Zhang, Qingzhao</creatorcontrib><creatorcontrib>Yue, Songlin</creatorcontrib><creatorcontrib>Zhang, Guokai</creatorcontrib><title>Creep characteristics and prediction of creep failure of rock discontinuities under shearing conditions</title><title>International journal of earth sciences : Geologische Rundschau</title><addtitle>Int J Earth Sci (Geol Rundsch)</addtitle><addtitle>INT J EARTH SCI</addtitle><description>Shear creep is one of the most important mechanical behaviors of rock discontinuities. The creep mechanism and prediction of starting point of the accelerating creep stage are vital for establishing the creep model and predicting creep failure. In this study, a series of multi-step creep tests are conducted. The three creep stages of shear creep tests are investigated in detail, and a method for predicting the accelerating creep stage is proposed. Distinct nonlinear and local fluctuations caused by cracking are observed in the creep curve. To describe the transition creep stage and steady creep stage, an empirical creep model is established, and the creep characteristics related to the joint roughness coefficient (JRC) and the normal stress are explored in detail using the model’s parameters. The creep process can be described as involving the JRC resistance weakening and frictional resistance compensation, and a model also established to describe this process. The frictional resistance cannot compensate for the loss of JRC resistance; consequently, creep failure occurs. The starting point of the accelerating creep stage can be predicted by combining the JRC weakening and frictional mobilization model and the empirical creep model. A new method for determining long-term strength is also proposed based on the relationships between the starting point creep deformation and the shear creep stress.</description><subject>Cracking (corrosion)</subject><subject>Creep strength</subject><subject>Creep tests</subject><subject>Deformation</subject><subject>Discontinuity</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Friction resistance</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Geosciences, Multidisciplinary</subject><subject>Mechanical properties</subject><subject>Mineral Resources</subject><subject>Original Paper</subject><subject>Physical Sciences</subject><subject>Process parameters</subject><subject>Rocks</subject><subject>Roughness</subject><subject>Roughness coefficient</subject><subject>Science & Technology</subject><subject>Sedimentology</subject><subject>Shear</subject><subject>Shear creep</subject><subject>Shearing</subject><subject>Solifluction</subject><subject>Structural Geology</subject><issn>1437-3254</issn><issn>1437-3262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMtOxSAQhhujidcXcEXi0lQHKL0sTeMtMXGja8Khg3I8QgUa49tLrdGdccVk-L-B-YrimMIZBWjOI4DgtAQGJdC2YmW7VezRijclZzXb_qlFtVvsx7gGmBt0r3jqA-JI9LMKSicMNiarI1FuIGPAwepkvSPeEP2VM8pupoBzI3j9QgYbtXfJuskmi5FMbsBA4jOqYN0TyXeDnSfEw2LHqE3Eo-_zoHi8unzob8q7--vb_uKuVLxiqaRi4Fwbg6xTSkHbNKtWVI2o68pA3aHGyoham3oQHRW10Sqv1DaCN8hYx4AfFCfL3DH4twljkms_BZeflIx32RHQbk6xJaWDjzGgkWOwryp8SApyFioXoTILlV9CZZuhdoHeceVN1Badxh8QMkA7ATXPFdDeJjUv3vvJpYye_h_Nab6k4zhbxPC7wx_f-wRmoppL</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wang, Zhen</creator><creator>Gu, Linlin</creator><creator>Zhang, Qingzhao</creator><creator>Yue, Songlin</creator><creator>Zhang, Guokai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20200401</creationdate><title>Creep characteristics and prediction of creep failure of rock discontinuities under shearing conditions</title><author>Wang, Zhen ; Gu, Linlin ; Zhang, Qingzhao ; Yue, Songlin ; Zhang, Guokai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-15d33cffe29aaa0877b85475664f069ece4f56cf6d59156fca25487537e229203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cracking (corrosion)</topic><topic>Creep strength</topic><topic>Creep tests</topic><topic>Deformation</topic><topic>Discontinuity</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Friction resistance</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Geosciences, Multidisciplinary</topic><topic>Mechanical properties</topic><topic>Mineral Resources</topic><topic>Original Paper</topic><topic>Physical Sciences</topic><topic>Process parameters</topic><topic>Rocks</topic><topic>Roughness</topic><topic>Roughness coefficient</topic><topic>Science & Technology</topic><topic>Sedimentology</topic><topic>Shear</topic><topic>Shear creep</topic><topic>Shearing</topic><topic>Solifluction</topic><topic>Structural Geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Gu, Linlin</creatorcontrib><creatorcontrib>Zhang, Qingzhao</creatorcontrib><creatorcontrib>Yue, Songlin</creatorcontrib><creatorcontrib>Zhang, Guokai</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal of earth sciences : Geologische Rundschau</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhen</au><au>Gu, Linlin</au><au>Zhang, Qingzhao</au><au>Yue, Songlin</au><au>Zhang, Guokai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep characteristics and prediction of creep failure of rock discontinuities under shearing conditions</atitle><jtitle>International journal of earth sciences : Geologische Rundschau</jtitle><stitle>Int J Earth Sci (Geol Rundsch)</stitle><stitle>INT J EARTH SCI</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>109</volume><issue>3</issue><spage>945</spage><epage>958</epage><pages>945-958</pages><issn>1437-3254</issn><eissn>1437-3262</eissn><abstract>Shear creep is one of the most important mechanical behaviors of rock discontinuities. The creep mechanism and prediction of starting point of the accelerating creep stage are vital for establishing the creep model and predicting creep failure. In this study, a series of multi-step creep tests are conducted. The three creep stages of shear creep tests are investigated in detail, and a method for predicting the accelerating creep stage is proposed. Distinct nonlinear and local fluctuations caused by cracking are observed in the creep curve. To describe the transition creep stage and steady creep stage, an empirical creep model is established, and the creep characteristics related to the joint roughness coefficient (JRC) and the normal stress are explored in detail using the model’s parameters. The creep process can be described as involving the JRC resistance weakening and frictional resistance compensation, and a model also established to describe this process. The frictional resistance cannot compensate for the loss of JRC resistance; consequently, creep failure occurs. The starting point of the accelerating creep stage can be predicted by combining the JRC weakening and frictional mobilization model and the empirical creep model. A new method for determining long-term strength is also proposed based on the relationships between the starting point creep deformation and the shear creep stress.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00531-020-01842-8</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1437-3254 |
ispartof | International journal of earth sciences : Geologische Rundschau, 2020-04, Vol.109 (3), p.945-958 |
issn | 1437-3254 1437-3262 |
language | eng |
recordid | cdi_webofscience_primary_000519506300001CitationCount |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Cracking (corrosion) Creep strength Creep tests Deformation Discontinuity Earth and Environmental Science Earth Sciences Friction resistance Geochemistry Geology Geophysics/Geodesy Geosciences, Multidisciplinary Mechanical properties Mineral Resources Original Paper Physical Sciences Process parameters Rocks Roughness Roughness coefficient Science & Technology Sedimentology Shear Shear creep Shearing Solifluction Structural Geology |
title | Creep characteristics and prediction of creep failure of rock discontinuities under shearing conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20characteristics%20and%20prediction%20of%20creep%20failure%20of%20rock%20discontinuities%20under%20shearing%20conditions&rft.jtitle=International%20journal%20of%20earth%20sciences%20:%20Geologische%20Rundschau&rft.au=Wang,%20Zhen&rft.date=2020-04-01&rft.volume=109&rft.issue=3&rft.spage=945&rft.epage=958&rft.pages=945-958&rft.issn=1437-3254&rft.eissn=1437-3262&rft_id=info:doi/10.1007/s00531-020-01842-8&rft_dat=%3Cproquest_webof%3E2395310190%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395310190&rft_id=info:pmid/&rfr_iscdi=true |