Creep characteristics and prediction of creep failure of rock discontinuities under shearing conditions

Shear creep is one of the most important mechanical behaviors of rock discontinuities. The creep mechanism and prediction of starting point of the accelerating creep stage are vital for establishing the creep model and predicting creep failure. In this study, a series of multi-step creep tests are c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of earth sciences : Geologische Rundschau 2020-04, Vol.109 (3), p.945-958
Hauptverfasser: Wang, Zhen, Gu, Linlin, Zhang, Qingzhao, Yue, Songlin, Zhang, Guokai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 958
container_issue 3
container_start_page 945
container_title International journal of earth sciences : Geologische Rundschau
container_volume 109
creator Wang, Zhen
Gu, Linlin
Zhang, Qingzhao
Yue, Songlin
Zhang, Guokai
description Shear creep is one of the most important mechanical behaviors of rock discontinuities. The creep mechanism and prediction of starting point of the accelerating creep stage are vital for establishing the creep model and predicting creep failure. In this study, a series of multi-step creep tests are conducted. The three creep stages of shear creep tests are investigated in detail, and a method for predicting the accelerating creep stage is proposed. Distinct nonlinear and local fluctuations caused by cracking are observed in the creep curve. To describe the transition creep stage and steady creep stage, an empirical creep model is established, and the creep characteristics related to the joint roughness coefficient (JRC) and the normal stress are explored in detail using the model’s parameters. The creep process can be described as involving the JRC resistance weakening and frictional resistance compensation, and a model also established to describe this process. The frictional resistance cannot compensate for the loss of JRC resistance; consequently, creep failure occurs. The starting point of the accelerating creep stage can be predicted by combining the JRC weakening and frictional mobilization model and the empirical creep model. A new method for determining long-term strength is also proposed based on the relationships between the starting point creep deformation and the shear creep stress.
doi_str_mv 10.1007/s00531-020-01842-8
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000519506300001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395310190</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-15d33cffe29aaa0877b85475664f069ece4f56cf6d59156fca25487537e229203</originalsourceid><addsrcrecordid>eNqNkMtOxSAQhhujidcXcEXi0lQHKL0sTeMtMXGja8Khg3I8QgUa49tLrdGdccVk-L-B-YrimMIZBWjOI4DgtAQGJdC2YmW7VezRijclZzXb_qlFtVvsx7gGmBt0r3jqA-JI9LMKSicMNiarI1FuIGPAwepkvSPeEP2VM8pupoBzI3j9QgYbtXfJuskmi5FMbsBA4jOqYN0TyXeDnSfEw2LHqE3Eo-_zoHi8unzob8q7--vb_uKuVLxiqaRi4Fwbg6xTSkHbNKtWVI2o68pA3aHGyoham3oQHRW10Sqv1DaCN8hYx4AfFCfL3DH4twljkms_BZeflIx32RHQbk6xJaWDjzGgkWOwryp8SApyFioXoTILlV9CZZuhdoHeceVN1Badxh8QMkA7ATXPFdDeJjUv3vvJpYye_h_Nab6k4zhbxPC7wx_f-wRmoppL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395310190</pqid></control><display><type>article</type><title>Creep characteristics and prediction of creep failure of rock discontinuities under shearing conditions</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Wang, Zhen ; Gu, Linlin ; Zhang, Qingzhao ; Yue, Songlin ; Zhang, Guokai</creator><creatorcontrib>Wang, Zhen ; Gu, Linlin ; Zhang, Qingzhao ; Yue, Songlin ; Zhang, Guokai</creatorcontrib><description>Shear creep is one of the most important mechanical behaviors of rock discontinuities. The creep mechanism and prediction of starting point of the accelerating creep stage are vital for establishing the creep model and predicting creep failure. In this study, a series of multi-step creep tests are conducted. The three creep stages of shear creep tests are investigated in detail, and a method for predicting the accelerating creep stage is proposed. Distinct nonlinear and local fluctuations caused by cracking are observed in the creep curve. To describe the transition creep stage and steady creep stage, an empirical creep model is established, and the creep characteristics related to the joint roughness coefficient (JRC) and the normal stress are explored in detail using the model’s parameters. The creep process can be described as involving the JRC resistance weakening and frictional resistance compensation, and a model also established to describe this process. The frictional resistance cannot compensate for the loss of JRC resistance; consequently, creep failure occurs. The starting point of the accelerating creep stage can be predicted by combining the JRC weakening and frictional mobilization model and the empirical creep model. A new method for determining long-term strength is also proposed based on the relationships between the starting point creep deformation and the shear creep stress.</description><identifier>ISSN: 1437-3254</identifier><identifier>EISSN: 1437-3262</identifier><identifier>DOI: 10.1007/s00531-020-01842-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cracking (corrosion) ; Creep strength ; Creep tests ; Deformation ; Discontinuity ; Earth and Environmental Science ; Earth Sciences ; Friction resistance ; Geochemistry ; Geology ; Geophysics/Geodesy ; Geosciences, Multidisciplinary ; Mechanical properties ; Mineral Resources ; Original Paper ; Physical Sciences ; Process parameters ; Rocks ; Roughness ; Roughness coefficient ; Science &amp; Technology ; Sedimentology ; Shear ; Shear creep ; Shearing ; Solifluction ; Structural Geology</subject><ispartof>International journal of earth sciences : Geologische Rundschau, 2020-04, Vol.109 (3), p.945-958</ispartof><rights>Geologische Vereinigung e.V. (GV) 2020</rights><rights>Geologische Vereinigung e.V. (GV) 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>30</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000519506300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a342t-15d33cffe29aaa0877b85475664f069ece4f56cf6d59156fca25487537e229203</citedby><cites>FETCH-LOGICAL-a342t-15d33cffe29aaa0877b85475664f069ece4f56cf6d59156fca25487537e229203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00531-020-01842-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00531-020-01842-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Gu, Linlin</creatorcontrib><creatorcontrib>Zhang, Qingzhao</creatorcontrib><creatorcontrib>Yue, Songlin</creatorcontrib><creatorcontrib>Zhang, Guokai</creatorcontrib><title>Creep characteristics and prediction of creep failure of rock discontinuities under shearing conditions</title><title>International journal of earth sciences : Geologische Rundschau</title><addtitle>Int J Earth Sci (Geol Rundsch)</addtitle><addtitle>INT J EARTH SCI</addtitle><description>Shear creep is one of the most important mechanical behaviors of rock discontinuities. The creep mechanism and prediction of starting point of the accelerating creep stage are vital for establishing the creep model and predicting creep failure. In this study, a series of multi-step creep tests are conducted. The three creep stages of shear creep tests are investigated in detail, and a method for predicting the accelerating creep stage is proposed. Distinct nonlinear and local fluctuations caused by cracking are observed in the creep curve. To describe the transition creep stage and steady creep stage, an empirical creep model is established, and the creep characteristics related to the joint roughness coefficient (JRC) and the normal stress are explored in detail using the model’s parameters. The creep process can be described as involving the JRC resistance weakening and frictional resistance compensation, and a model also established to describe this process. The frictional resistance cannot compensate for the loss of JRC resistance; consequently, creep failure occurs. The starting point of the accelerating creep stage can be predicted by combining the JRC weakening and frictional mobilization model and the empirical creep model. A new method for determining long-term strength is also proposed based on the relationships between the starting point creep deformation and the shear creep stress.</description><subject>Cracking (corrosion)</subject><subject>Creep strength</subject><subject>Creep tests</subject><subject>Deformation</subject><subject>Discontinuity</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Friction resistance</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Geosciences, Multidisciplinary</subject><subject>Mechanical properties</subject><subject>Mineral Resources</subject><subject>Original Paper</subject><subject>Physical Sciences</subject><subject>Process parameters</subject><subject>Rocks</subject><subject>Roughness</subject><subject>Roughness coefficient</subject><subject>Science &amp; Technology</subject><subject>Sedimentology</subject><subject>Shear</subject><subject>Shear creep</subject><subject>Shearing</subject><subject>Solifluction</subject><subject>Structural Geology</subject><issn>1437-3254</issn><issn>1437-3262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMtOxSAQhhujidcXcEXi0lQHKL0sTeMtMXGja8Khg3I8QgUa49tLrdGdccVk-L-B-YrimMIZBWjOI4DgtAQGJdC2YmW7VezRijclZzXb_qlFtVvsx7gGmBt0r3jqA-JI9LMKSicMNiarI1FuIGPAwepkvSPeEP2VM8pupoBzI3j9QgYbtXfJuskmi5FMbsBA4jOqYN0TyXeDnSfEw2LHqE3Eo-_zoHi8unzob8q7--vb_uKuVLxiqaRi4Fwbg6xTSkHbNKtWVI2o68pA3aHGyoham3oQHRW10Sqv1DaCN8hYx4AfFCfL3DH4twljkms_BZeflIx32RHQbk6xJaWDjzGgkWOwryp8SApyFioXoTILlV9CZZuhdoHeceVN1Badxh8QMkA7ATXPFdDeJjUv3vvJpYye_h_Nab6k4zhbxPC7wx_f-wRmoppL</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wang, Zhen</creator><creator>Gu, Linlin</creator><creator>Zhang, Qingzhao</creator><creator>Yue, Songlin</creator><creator>Zhang, Guokai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20200401</creationdate><title>Creep characteristics and prediction of creep failure of rock discontinuities under shearing conditions</title><author>Wang, Zhen ; Gu, Linlin ; Zhang, Qingzhao ; Yue, Songlin ; Zhang, Guokai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-15d33cffe29aaa0877b85475664f069ece4f56cf6d59156fca25487537e229203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cracking (corrosion)</topic><topic>Creep strength</topic><topic>Creep tests</topic><topic>Deformation</topic><topic>Discontinuity</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Friction resistance</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Geosciences, Multidisciplinary</topic><topic>Mechanical properties</topic><topic>Mineral Resources</topic><topic>Original Paper</topic><topic>Physical Sciences</topic><topic>Process parameters</topic><topic>Rocks</topic><topic>Roughness</topic><topic>Roughness coefficient</topic><topic>Science &amp; Technology</topic><topic>Sedimentology</topic><topic>Shear</topic><topic>Shear creep</topic><topic>Shearing</topic><topic>Solifluction</topic><topic>Structural Geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Gu, Linlin</creatorcontrib><creatorcontrib>Zhang, Qingzhao</creatorcontrib><creatorcontrib>Yue, Songlin</creatorcontrib><creatorcontrib>Zhang, Guokai</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal of earth sciences : Geologische Rundschau</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhen</au><au>Gu, Linlin</au><au>Zhang, Qingzhao</au><au>Yue, Songlin</au><au>Zhang, Guokai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep characteristics and prediction of creep failure of rock discontinuities under shearing conditions</atitle><jtitle>International journal of earth sciences : Geologische Rundschau</jtitle><stitle>Int J Earth Sci (Geol Rundsch)</stitle><stitle>INT J EARTH SCI</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>109</volume><issue>3</issue><spage>945</spage><epage>958</epage><pages>945-958</pages><issn>1437-3254</issn><eissn>1437-3262</eissn><abstract>Shear creep is one of the most important mechanical behaviors of rock discontinuities. The creep mechanism and prediction of starting point of the accelerating creep stage are vital for establishing the creep model and predicting creep failure. In this study, a series of multi-step creep tests are conducted. The three creep stages of shear creep tests are investigated in detail, and a method for predicting the accelerating creep stage is proposed. Distinct nonlinear and local fluctuations caused by cracking are observed in the creep curve. To describe the transition creep stage and steady creep stage, an empirical creep model is established, and the creep characteristics related to the joint roughness coefficient (JRC) and the normal stress are explored in detail using the model’s parameters. The creep process can be described as involving the JRC resistance weakening and frictional resistance compensation, and a model also established to describe this process. The frictional resistance cannot compensate for the loss of JRC resistance; consequently, creep failure occurs. The starting point of the accelerating creep stage can be predicted by combining the JRC weakening and frictional mobilization model and the empirical creep model. A new method for determining long-term strength is also proposed based on the relationships between the starting point creep deformation and the shear creep stress.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00531-020-01842-8</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1437-3254
ispartof International journal of earth sciences : Geologische Rundschau, 2020-04, Vol.109 (3), p.945-958
issn 1437-3254
1437-3262
language eng
recordid cdi_webofscience_primary_000519506300001CitationCount
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Cracking (corrosion)
Creep strength
Creep tests
Deformation
Discontinuity
Earth and Environmental Science
Earth Sciences
Friction resistance
Geochemistry
Geology
Geophysics/Geodesy
Geosciences, Multidisciplinary
Mechanical properties
Mineral Resources
Original Paper
Physical Sciences
Process parameters
Rocks
Roughness
Roughness coefficient
Science & Technology
Sedimentology
Shear
Shear creep
Shearing
Solifluction
Structural Geology
title Creep characteristics and prediction of creep failure of rock discontinuities under shearing conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20characteristics%20and%20prediction%20of%20creep%20failure%20of%20rock%20discontinuities%20under%20shearing%20conditions&rft.jtitle=International%20journal%20of%20earth%20sciences%20:%20Geologische%20Rundschau&rft.au=Wang,%20Zhen&rft.date=2020-04-01&rft.volume=109&rft.issue=3&rft.spage=945&rft.epage=958&rft.pages=945-958&rft.issn=1437-3254&rft.eissn=1437-3262&rft_id=info:doi/10.1007/s00531-020-01842-8&rft_dat=%3Cproquest_webof%3E2395310190%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395310190&rft_id=info:pmid/&rfr_iscdi=true