Exact sequences on Powell–Sabin splits
We construct smooth finite elements spaces on Powell–Sabin triangulations that form an exact sequence. The first space of the sequence coincides with the classical C 1 Powell–Sabin space, while the others form stable and divergence-free yielding pairs for the Stokes problem. We develop degrees of fr...
Gespeichert in:
Veröffentlicht in: | Calcolo 2020-06, Vol.57 (2), Article 13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct smooth finite elements spaces on Powell–Sabin triangulations that form an exact sequence. The first space of the sequence coincides with the classical
C
1
Powell–Sabin space, while the others form stable and divergence-free yielding pairs for the Stokes problem. We develop degrees of freedom for these spaces that induce projections that commute with the differential operators. |
---|---|
ISSN: | 0008-0624 1126-5434 |
DOI: | 10.1007/s10092-020-00361-x |