Strong Stabilization of Distributed Bilinear Systems with Time Delay

This paper investigates global strong stabilization of time-delayed bilinear systems on a real Hilbert state space. Sufficient conditions for strong global stabilization are formulated in terms of observability like assumptions. An explicit decay rate of the stabilized state is provided. Illustrativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamical and control systems 2020-04, Vol.26 (2), p.243-254
Hauptverfasser: Hamidi, Z., Ouzahra, M., Elazzouzi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 2
container_start_page 243
container_title Journal of dynamical and control systems
container_volume 26
creator Hamidi, Z.
Ouzahra, M.
Elazzouzi, A.
description This paper investigates global strong stabilization of time-delayed bilinear systems on a real Hilbert state space. Sufficient conditions for strong global stabilization are formulated in terms of observability like assumptions. An explicit decay rate of the stabilized state is provided. Illustrative examples are presented.
doi_str_mv 10.1007/s10883-019-09459-0
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000519375400004CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2363167978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-215032b32ab91925e2ef584aecfe372317239c830a6ec6fbce7e0c45eef067443</originalsourceid><addsrcrecordid>eNqNkF1PwyAUhhujifPjD3jVxEtTPUBb4FI7v5IlXmxeE4qnk2VrJ9As89fLVqN3xgvgJLzP4fAkyQWBawLAbzwBIVgGRGYg8yLuB8mIFJxlopTiMNbAZUY5zY-TE-8XACAFE6NkPA2ua-fpNOjaLu2nDrZr065Jx9YHZ-s-4Ft6F29a1C6dbn3AlU83NrynM7vCdIxLvT1Ljhq99Hj-fZ4mrw_3s-opm7w8Ple3k8wwIkNGSQGM1ozqWhJJC6TYFCLXaBpknDISlzSCgS7RlE1tkCOYvEBsoOR5zk6Ty6Hv2nUfPfqgFl3v2vikoqxkpOSSi5iiQ8q4znuHjVo7u9JuqwionS012FLRltrbUhChqwHaYN013lhsDf6AUVdBJONFHivYDSL-n65s2Futur4NEWUD6mO8naP7_cMf430BiayNRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363167978</pqid></control><display><type>article</type><title>Strong Stabilization of Distributed Bilinear Systems with Time Delay</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Hamidi, Z. ; Ouzahra, M. ; Elazzouzi, A.</creator><creatorcontrib>Hamidi, Z. ; Ouzahra, M. ; Elazzouzi, A.</creatorcontrib><description>This paper investigates global strong stabilization of time-delayed bilinear systems on a real Hilbert state space. Sufficient conditions for strong global stabilization are formulated in terms of observability like assumptions. An explicit decay rate of the stabilized state is provided. Illustrative examples are presented.</description><identifier>ISSN: 1079-2724</identifier><identifier>EISSN: 1573-8698</identifier><identifier>DOI: 10.1007/s10883-019-09459-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automation &amp; Control Systems ; Calculus of Variations and Optimal Control; Optimization ; Control ; Decay rate ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Mathematics ; Mathematics and Statistics ; Mathematics, Applied ; Physical Sciences ; Science &amp; Technology ; Stabilization ; Systems Theory ; Technology ; Time lag ; Vibration</subject><ispartof>Journal of dynamical and control systems, 2020-04, Vol.26 (2), p.243-254</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>2019© Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000519375400004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-215032b32ab91925e2ef584aecfe372317239c830a6ec6fbce7e0c45eef067443</citedby><cites>FETCH-LOGICAL-c319t-215032b32ab91925e2ef584aecfe372317239c830a6ec6fbce7e0c45eef067443</cites><orcidid>0000-0003-3980-2548 ; 0000-0003-1701-7493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10883-019-09459-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10883-019-09459-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Hamidi, Z.</creatorcontrib><creatorcontrib>Ouzahra, M.</creatorcontrib><creatorcontrib>Elazzouzi, A.</creatorcontrib><title>Strong Stabilization of Distributed Bilinear Systems with Time Delay</title><title>Journal of dynamical and control systems</title><addtitle>J Dyn Control Syst</addtitle><addtitle>J DYN CONTROL SYST</addtitle><description>This paper investigates global strong stabilization of time-delayed bilinear systems on a real Hilbert state space. Sufficient conditions for strong global stabilization are formulated in terms of observability like assumptions. An explicit decay rate of the stabilized state is provided. Illustrative examples are presented.</description><subject>Automation &amp; Control Systems</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Decay rate</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics, Applied</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Stabilization</subject><subject>Systems Theory</subject><subject>Technology</subject><subject>Time lag</subject><subject>Vibration</subject><issn>1079-2724</issn><issn>1573-8698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkF1PwyAUhhujifPjD3jVxEtTPUBb4FI7v5IlXmxeE4qnk2VrJ9As89fLVqN3xgvgJLzP4fAkyQWBawLAbzwBIVgGRGYg8yLuB8mIFJxlopTiMNbAZUY5zY-TE-8XACAFE6NkPA2ua-fpNOjaLu2nDrZr065Jx9YHZ-s-4Ft6F29a1C6dbn3AlU83NrynM7vCdIxLvT1Ljhq99Hj-fZ4mrw_3s-opm7w8Ple3k8wwIkNGSQGM1ozqWhJJC6TYFCLXaBpknDISlzSCgS7RlE1tkCOYvEBsoOR5zk6Ty6Hv2nUfPfqgFl3v2vikoqxkpOSSi5iiQ8q4znuHjVo7u9JuqwionS012FLRltrbUhChqwHaYN013lhsDf6AUVdBJONFHivYDSL-n65s2Futur4NEWUD6mO8naP7_cMf430BiayNRw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Hamidi, Z.</creator><creator>Ouzahra, M.</creator><creator>Elazzouzi, A.</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3980-2548</orcidid><orcidid>https://orcid.org/0000-0003-1701-7493</orcidid></search><sort><creationdate>20200401</creationdate><title>Strong Stabilization of Distributed Bilinear Systems with Time Delay</title><author>Hamidi, Z. ; Ouzahra, M. ; Elazzouzi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-215032b32ab91925e2ef584aecfe372317239c830a6ec6fbce7e0c45eef067443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation &amp; Control Systems</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Decay rate</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics, Applied</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Stabilization</topic><topic>Systems Theory</topic><topic>Technology</topic><topic>Time lag</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamidi, Z.</creatorcontrib><creatorcontrib>Ouzahra, M.</creatorcontrib><creatorcontrib>Elazzouzi, A.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Journal of dynamical and control systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamidi, Z.</au><au>Ouzahra, M.</au><au>Elazzouzi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Stabilization of Distributed Bilinear Systems with Time Delay</atitle><jtitle>Journal of dynamical and control systems</jtitle><stitle>J Dyn Control Syst</stitle><stitle>J DYN CONTROL SYST</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>26</volume><issue>2</issue><spage>243</spage><epage>254</epage><pages>243-254</pages><issn>1079-2724</issn><eissn>1573-8698</eissn><abstract>This paper investigates global strong stabilization of time-delayed bilinear systems on a real Hilbert state space. Sufficient conditions for strong global stabilization are formulated in terms of observability like assumptions. An explicit decay rate of the stabilized state is provided. Illustrative examples are presented.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10883-019-09459-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3980-2548</orcidid><orcidid>https://orcid.org/0000-0003-1701-7493</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1079-2724
ispartof Journal of dynamical and control systems, 2020-04, Vol.26 (2), p.243-254
issn 1079-2724
1573-8698
language eng
recordid cdi_webofscience_primary_000519375400004CitationCount
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Automation & Control Systems
Calculus of Variations and Optimal Control
Optimization
Control
Decay rate
Dynamical Systems
Dynamical Systems and Ergodic Theory
Mathematics
Mathematics and Statistics
Mathematics, Applied
Physical Sciences
Science & Technology
Stabilization
Systems Theory
Technology
Time lag
Vibration
title Strong Stabilization of Distributed Bilinear Systems with Time Delay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Stabilization%20of%20Distributed%20Bilinear%20Systems%20with%20Time%20Delay&rft.jtitle=Journal%20of%20dynamical%20and%20control%20systems&rft.au=Hamidi,%20Z.&rft.date=2020-04-01&rft.volume=26&rft.issue=2&rft.spage=243&rft.epage=254&rft.pages=243-254&rft.issn=1079-2724&rft.eissn=1573-8698&rft_id=info:doi/10.1007/s10883-019-09459-0&rft_dat=%3Cproquest_webof%3E2363167978%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363167978&rft_id=info:pmid/&rfr_iscdi=true