Strong Stabilization of Distributed Bilinear Systems with Time Delay
This paper investigates global strong stabilization of time-delayed bilinear systems on a real Hilbert state space. Sufficient conditions for strong global stabilization are formulated in terms of observability like assumptions. An explicit decay rate of the stabilized state is provided. Illustrativ...
Gespeichert in:
Veröffentlicht in: | Journal of dynamical and control systems 2020-04, Vol.26 (2), p.243-254 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 2 |
container_start_page | 243 |
container_title | Journal of dynamical and control systems |
container_volume | 26 |
creator | Hamidi, Z. Ouzahra, M. Elazzouzi, A. |
description | This paper investigates global strong stabilization of time-delayed bilinear systems on a real Hilbert state space. Sufficient conditions for strong global stabilization are formulated in terms of observability like assumptions. An explicit decay rate of the stabilized state is provided. Illustrative examples are presented. |
doi_str_mv | 10.1007/s10883-019-09459-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000519375400004CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2363167978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-215032b32ab91925e2ef584aecfe372317239c830a6ec6fbce7e0c45eef067443</originalsourceid><addsrcrecordid>eNqNkF1PwyAUhhujifPjD3jVxEtTPUBb4FI7v5IlXmxeE4qnk2VrJ9As89fLVqN3xgvgJLzP4fAkyQWBawLAbzwBIVgGRGYg8yLuB8mIFJxlopTiMNbAZUY5zY-TE-8XACAFE6NkPA2ua-fpNOjaLu2nDrZr065Jx9YHZ-s-4Ft6F29a1C6dbn3AlU83NrynM7vCdIxLvT1Ljhq99Hj-fZ4mrw_3s-opm7w8Ple3k8wwIkNGSQGM1ozqWhJJC6TYFCLXaBpknDISlzSCgS7RlE1tkCOYvEBsoOR5zk6Ty6Hv2nUfPfqgFl3v2vikoqxkpOSSi5iiQ8q4znuHjVo7u9JuqwionS012FLRltrbUhChqwHaYN013lhsDf6AUVdBJONFHivYDSL-n65s2Futur4NEWUD6mO8naP7_cMf430BiayNRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363167978</pqid></control><display><type>article</type><title>Strong Stabilization of Distributed Bilinear Systems with Time Delay</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Hamidi, Z. ; Ouzahra, M. ; Elazzouzi, A.</creator><creatorcontrib>Hamidi, Z. ; Ouzahra, M. ; Elazzouzi, A.</creatorcontrib><description>This paper investigates global strong stabilization of time-delayed bilinear systems on a real Hilbert state space. Sufficient conditions for strong global stabilization are formulated in terms of observability like assumptions. An explicit decay rate of the stabilized state is provided. Illustrative examples are presented.</description><identifier>ISSN: 1079-2724</identifier><identifier>EISSN: 1573-8698</identifier><identifier>DOI: 10.1007/s10883-019-09459-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automation & Control Systems ; Calculus of Variations and Optimal Control; Optimization ; Control ; Decay rate ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Mathematics ; Mathematics and Statistics ; Mathematics, Applied ; Physical Sciences ; Science & Technology ; Stabilization ; Systems Theory ; Technology ; Time lag ; Vibration</subject><ispartof>Journal of dynamical and control systems, 2020-04, Vol.26 (2), p.243-254</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>2019© Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000519375400004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-215032b32ab91925e2ef584aecfe372317239c830a6ec6fbce7e0c45eef067443</citedby><cites>FETCH-LOGICAL-c319t-215032b32ab91925e2ef584aecfe372317239c830a6ec6fbce7e0c45eef067443</cites><orcidid>0000-0003-3980-2548 ; 0000-0003-1701-7493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10883-019-09459-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10883-019-09459-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Hamidi, Z.</creatorcontrib><creatorcontrib>Ouzahra, M.</creatorcontrib><creatorcontrib>Elazzouzi, A.</creatorcontrib><title>Strong Stabilization of Distributed Bilinear Systems with Time Delay</title><title>Journal of dynamical and control systems</title><addtitle>J Dyn Control Syst</addtitle><addtitle>J DYN CONTROL SYST</addtitle><description>This paper investigates global strong stabilization of time-delayed bilinear systems on a real Hilbert state space. Sufficient conditions for strong global stabilization are formulated in terms of observability like assumptions. An explicit decay rate of the stabilized state is provided. Illustrative examples are presented.</description><subject>Automation & Control Systems</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Decay rate</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics, Applied</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Stabilization</subject><subject>Systems Theory</subject><subject>Technology</subject><subject>Time lag</subject><subject>Vibration</subject><issn>1079-2724</issn><issn>1573-8698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkF1PwyAUhhujifPjD3jVxEtTPUBb4FI7v5IlXmxeE4qnk2VrJ9As89fLVqN3xgvgJLzP4fAkyQWBawLAbzwBIVgGRGYg8yLuB8mIFJxlopTiMNbAZUY5zY-TE-8XACAFE6NkPA2ua-fpNOjaLu2nDrZr065Jx9YHZ-s-4Ft6F29a1C6dbn3AlU83NrynM7vCdIxLvT1Ljhq99Hj-fZ4mrw_3s-opm7w8Ple3k8wwIkNGSQGM1ozqWhJJC6TYFCLXaBpknDISlzSCgS7RlE1tkCOYvEBsoOR5zk6Ty6Hv2nUfPfqgFl3v2vikoqxkpOSSi5iiQ8q4znuHjVo7u9JuqwionS012FLRltrbUhChqwHaYN013lhsDf6AUVdBJONFHivYDSL-n65s2Futur4NEWUD6mO8naP7_cMf430BiayNRw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Hamidi, Z.</creator><creator>Ouzahra, M.</creator><creator>Elazzouzi, A.</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3980-2548</orcidid><orcidid>https://orcid.org/0000-0003-1701-7493</orcidid></search><sort><creationdate>20200401</creationdate><title>Strong Stabilization of Distributed Bilinear Systems with Time Delay</title><author>Hamidi, Z. ; Ouzahra, M. ; Elazzouzi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-215032b32ab91925e2ef584aecfe372317239c830a6ec6fbce7e0c45eef067443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation & Control Systems</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Decay rate</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics, Applied</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Stabilization</topic><topic>Systems Theory</topic><topic>Technology</topic><topic>Time lag</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamidi, Z.</creatorcontrib><creatorcontrib>Ouzahra, M.</creatorcontrib><creatorcontrib>Elazzouzi, A.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Journal of dynamical and control systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamidi, Z.</au><au>Ouzahra, M.</au><au>Elazzouzi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Stabilization of Distributed Bilinear Systems with Time Delay</atitle><jtitle>Journal of dynamical and control systems</jtitle><stitle>J Dyn Control Syst</stitle><stitle>J DYN CONTROL SYST</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>26</volume><issue>2</issue><spage>243</spage><epage>254</epage><pages>243-254</pages><issn>1079-2724</issn><eissn>1573-8698</eissn><abstract>This paper investigates global strong stabilization of time-delayed bilinear systems on a real Hilbert state space. Sufficient conditions for strong global stabilization are formulated in terms of observability like assumptions. An explicit decay rate of the stabilized state is provided. Illustrative examples are presented.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10883-019-09459-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3980-2548</orcidid><orcidid>https://orcid.org/0000-0003-1701-7493</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-2724 |
ispartof | Journal of dynamical and control systems, 2020-04, Vol.26 (2), p.243-254 |
issn | 1079-2724 1573-8698 |
language | eng |
recordid | cdi_webofscience_primary_000519375400004CitationCount |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Automation & Control Systems Calculus of Variations and Optimal Control Optimization Control Decay rate Dynamical Systems Dynamical Systems and Ergodic Theory Mathematics Mathematics and Statistics Mathematics, Applied Physical Sciences Science & Technology Stabilization Systems Theory Technology Time lag Vibration |
title | Strong Stabilization of Distributed Bilinear Systems with Time Delay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Stabilization%20of%20Distributed%20Bilinear%20Systems%20with%20Time%20Delay&rft.jtitle=Journal%20of%20dynamical%20and%20control%20systems&rft.au=Hamidi,%20Z.&rft.date=2020-04-01&rft.volume=26&rft.issue=2&rft.spage=243&rft.epage=254&rft.pages=243-254&rft.issn=1079-2724&rft.eissn=1573-8698&rft_id=info:doi/10.1007/s10883-019-09459-0&rft_dat=%3Cproquest_webof%3E2363167978%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363167978&rft_id=info:pmid/&rfr_iscdi=true |