An Image Mosaic Method Based on Convolutional Neural Network Semantic Features Extraction

Since traditional image feature extraction methods rely on features such as corner points, a new method based on semantic feature extraction is proposed inspiring by convolution neural attack. The semantic features of each pixel in an image are computed and quantified by neural network to represent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of signal processing systems 2020-04, Vol.92 (4), p.435-444
Hauptverfasser: Shi, Zaifeng, Li, Hui, Cao, Qingjie, Ren, Huizheng, Fan, Boyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 444
container_issue 4
container_start_page 435
container_title Journal of signal processing systems
container_volume 92
creator Shi, Zaifeng
Li, Hui
Cao, Qingjie
Ren, Huizheng
Fan, Boyu
description Since traditional image feature extraction methods rely on features such as corner points, a new method based on semantic feature extraction is proposed inspiring by convolution neural attack. The semantic features of each pixel in an image are computed and quantified by neural network to represent the contribution of each pixel to the image semantics. According to the quantization results, the semantic contribution values of each pixel are sorted, and the semantic feature points are selected from high to low and the image mosaic is completed. Experimental results show that this method can effectively extract image features and complete image mosaic.
doi_str_mv 10.1007/s11265-019-01477-2
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000519348800007CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376771931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1445acae9b03abb905ca975ba2b50049758ba3d1fd29bac309c306a04fb1c29b3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EElD4AVaWWKLAOI86XkJEoRKFBbBgZY0dBwJtDLbD4-9xGx47xGI0o9G5o7mXkD0GhwyAH3nG0nGRABOxcs6TdI1sMZGJpGSsWP-egZWbZNv7R4Ax8IJtkbvjjk4XeG_ozHpsNZ2Z8GBreoLe1NR2tLLdq533obUdzuml6d2qhTfrnui1WWAXompiMPTOeHr6HhzqJb1DNhqce7P71UfkdnJ6U50nF1dn0-r4ItEZEyFheV6gRiMUZKiUgEKj4IXCVBUAeRxLhVnNmjoVCnUGItYYIW8U03GVjcj-cPfZ2Zfe-CAfbe_is16mGR9zHq2zSKUDpZ313plGPrt2ge5DMpDLCOUQoYwRylWEUT0i5SB6M8o2Xrem0-ZHCABFvJ2XZZyAV23Ape_K9l2I0oP_SyOdDbSPRHdv3K-HP977BFsjlNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376771931</pqid></control><display><type>article</type><title>An Image Mosaic Method Based on Convolutional Neural Network Semantic Features Extraction</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Shi, Zaifeng ; Li, Hui ; Cao, Qingjie ; Ren, Huizheng ; Fan, Boyu</creator><creatorcontrib>Shi, Zaifeng ; Li, Hui ; Cao, Qingjie ; Ren, Huizheng ; Fan, Boyu</creatorcontrib><description>Since traditional image feature extraction methods rely on features such as corner points, a new method based on semantic feature extraction is proposed inspiring by convolution neural attack. The semantic features of each pixel in an image are computed and quantified by neural network to represent the contribution of each pixel to the image semantics. According to the quantization results, the semantic contribution values of each pixel are sorted, and the semantic feature points are selected from high to low and the image mosaic is completed. Experimental results show that this method can effectively extract image features and complete image mosaic.</description><identifier>ISSN: 1939-8018</identifier><identifier>EISSN: 1939-8115</identifier><identifier>DOI: 10.1007/s11265-019-01477-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Circuits and Systems ; Computer Imaging ; Computer Science ; Computer Science, Information Systems ; Convolution ; Electrical Engineering ; Engineering ; Engineering, Electrical &amp; Electronic ; Feature extraction ; Image Processing and Computer Vision ; Neural networks ; Pattern Recognition ; Pattern Recognition and Graphics ; Pixels ; Science &amp; Technology ; Semantics ; Signal,Image and Speech Processing ; Technology ; Vision</subject><ispartof>Journal of signal processing systems, 2020-04, Vol.92 (4), p.435-444</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>2019© Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000519348800007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-1445acae9b03abb905ca975ba2b50049758ba3d1fd29bac309c306a04fb1c29b3</citedby><cites>FETCH-LOGICAL-c319t-1445acae9b03abb905ca975ba2b50049758ba3d1fd29bac309c306a04fb1c29b3</cites><orcidid>0000-0002-3851-5697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11265-019-01477-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11265-019-01477-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Shi, Zaifeng</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Cao, Qingjie</creatorcontrib><creatorcontrib>Ren, Huizheng</creatorcontrib><creatorcontrib>Fan, Boyu</creatorcontrib><title>An Image Mosaic Method Based on Convolutional Neural Network Semantic Features Extraction</title><title>Journal of signal processing systems</title><addtitle>J Sign Process Syst</addtitle><addtitle>J SIGNAL PROCESS SYS</addtitle><description>Since traditional image feature extraction methods rely on features such as corner points, a new method based on semantic feature extraction is proposed inspiring by convolution neural attack. The semantic features of each pixel in an image are computed and quantified by neural network to represent the contribution of each pixel to the image semantics. According to the quantization results, the semantic contribution values of each pixel are sorted, and the semantic feature points are selected from high to low and the image mosaic is completed. Experimental results show that this method can effectively extract image features and complete image mosaic.</description><subject>Artificial neural networks</subject><subject>Circuits and Systems</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Convolution</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Feature extraction</subject><subject>Image Processing and Computer Vision</subject><subject>Neural networks</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Pixels</subject><subject>Science &amp; Technology</subject><subject>Semantics</subject><subject>Signal,Image and Speech Processing</subject><subject>Technology</subject><subject>Vision</subject><issn>1939-8018</issn><issn>1939-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMtOwzAQRS0EElD4AVaWWKLAOI86XkJEoRKFBbBgZY0dBwJtDLbD4-9xGx47xGI0o9G5o7mXkD0GhwyAH3nG0nGRABOxcs6TdI1sMZGJpGSsWP-egZWbZNv7R4Ax8IJtkbvjjk4XeG_ozHpsNZ2Z8GBreoLe1NR2tLLdq533obUdzuml6d2qhTfrnui1WWAXompiMPTOeHr6HhzqJb1DNhqce7P71UfkdnJ6U50nF1dn0-r4ItEZEyFheV6gRiMUZKiUgEKj4IXCVBUAeRxLhVnNmjoVCnUGItYYIW8U03GVjcj-cPfZ2Zfe-CAfbe_is16mGR9zHq2zSKUDpZ313plGPrt2ge5DMpDLCOUQoYwRylWEUT0i5SB6M8o2Xrem0-ZHCABFvJ2XZZyAV23Ape_K9l2I0oP_SyOdDbSPRHdv3K-HP977BFsjlNg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Shi, Zaifeng</creator><creator>Li, Hui</creator><creator>Cao, Qingjie</creator><creator>Ren, Huizheng</creator><creator>Fan, Boyu</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3851-5697</orcidid></search><sort><creationdate>20200401</creationdate><title>An Image Mosaic Method Based on Convolutional Neural Network Semantic Features Extraction</title><author>Shi, Zaifeng ; Li, Hui ; Cao, Qingjie ; Ren, Huizheng ; Fan, Boyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1445acae9b03abb905ca975ba2b50049758ba3d1fd29bac309c306a04fb1c29b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Circuits and Systems</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Convolution</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Feature extraction</topic><topic>Image Processing and Computer Vision</topic><topic>Neural networks</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Pixels</topic><topic>Science &amp; Technology</topic><topic>Semantics</topic><topic>Signal,Image and Speech Processing</topic><topic>Technology</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zaifeng</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Cao, Qingjie</creatorcontrib><creatorcontrib>Ren, Huizheng</creatorcontrib><creatorcontrib>Fan, Boyu</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Journal of signal processing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zaifeng</au><au>Li, Hui</au><au>Cao, Qingjie</au><au>Ren, Huizheng</au><au>Fan, Boyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Image Mosaic Method Based on Convolutional Neural Network Semantic Features Extraction</atitle><jtitle>Journal of signal processing systems</jtitle><stitle>J Sign Process Syst</stitle><stitle>J SIGNAL PROCESS SYS</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>92</volume><issue>4</issue><spage>435</spage><epage>444</epage><pages>435-444</pages><issn>1939-8018</issn><eissn>1939-8115</eissn><abstract>Since traditional image feature extraction methods rely on features such as corner points, a new method based on semantic feature extraction is proposed inspiring by convolution neural attack. The semantic features of each pixel in an image are computed and quantified by neural network to represent the contribution of each pixel to the image semantics. According to the quantization results, the semantic contribution values of each pixel are sorted, and the semantic feature points are selected from high to low and the image mosaic is completed. Experimental results show that this method can effectively extract image features and complete image mosaic.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11265-019-01477-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3851-5697</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1939-8018
ispartof Journal of signal processing systems, 2020-04, Vol.92 (4), p.435-444
issn 1939-8018
1939-8115
language eng
recordid cdi_webofscience_primary_000519348800007CitationCount
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Artificial neural networks
Circuits and Systems
Computer Imaging
Computer Science
Computer Science, Information Systems
Convolution
Electrical Engineering
Engineering
Engineering, Electrical & Electronic
Feature extraction
Image Processing and Computer Vision
Neural networks
Pattern Recognition
Pattern Recognition and Graphics
Pixels
Science & Technology
Semantics
Signal,Image and Speech Processing
Technology
Vision
title An Image Mosaic Method Based on Convolutional Neural Network Semantic Features Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T15%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Image%20Mosaic%20Method%20Based%20on%20Convolutional%20Neural%20Network%20Semantic%20Features%20Extraction&rft.jtitle=Journal%20of%20signal%20processing%20systems&rft.au=Shi,%20Zaifeng&rft.date=2020-04-01&rft.volume=92&rft.issue=4&rft.spage=435&rft.epage=444&rft.pages=435-444&rft.issn=1939-8018&rft.eissn=1939-8115&rft_id=info:doi/10.1007/s11265-019-01477-2&rft_dat=%3Cproquest_webof%3E2376771931%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376771931&rft_id=info:pmid/&rfr_iscdi=true