Linker-Eliminated Nano Metal–Organic Framework Fluorescent Probe for Highly Selective and Sensitive Phosphate Ratiometric Detection in Water and Body Fluids

Phosphate is an important anion in both the aquatic environment and biological systems. The search for a selective and sensitive phosphate ratiometric fluorescent probe to quantify the phosphate level in water samples and body fluids is of great significance for the protection of the ecological envi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-03, Vol.92 (5), p.3722-3727
Hauptverfasser: Ma, Yu, Zhang, Yingqiu, Li, Xiangyuan, Yang, Peng, Yue, Jie-Yu, Jiang, Yu, Tang, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phosphate is an important anion in both the aquatic environment and biological systems. The search for a selective and sensitive phosphate ratiometric fluorescent probe to quantify the phosphate level in water samples and body fluids is of great significance for the protection of the ecological environment and human health. Here, a porphyrin-based nano metal–organic framework (NMOF), PCN-224, was successfully exploited as a simple but highly sensitive and selective single-component ratiometric fluorescent probe with accurate composition and measurable structure for the quantitative determination of phosphate, based on the interesting double-emission fluorescence of the porphyrin ligand itself. Compared with other zirconium-based NMOF probes for phosphate, the reduced number of connections for ZrO clusters with the ligand in PCN-224 obtained by a linker-elimination strategy simultaneously provides more active recognition sites for phosphate, which effectively improves the sensitivity of the zirconium-based NMOF probes. The detection limit of the probe is only 54 nM. Additionally, the accuracy of the ratiometric detection based on this probe was further proved by the detection of phosphate in human serum and drinking water.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.9b04958