Non-stationary thermoelectric effect in He II and how it is affected by the thermal vibrations’ transition from laminar to the turbulent regime
The observation of the thermoelectric effect, which is the spontaneous electric polarization of a cell with liquid He II during the thermal excitation of standing second-sound waves, has been confirmed [Low Temperature Physics 30, 1321 (2004)]. The relationship of this effect with the thermal and hy...
Gespeichert in:
Veröffentlicht in: | Low temperature physics (Woodbury, N.Y.) N.Y.), 2020-01, Vol.46 (1), p.28-40 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 1 |
container_start_page | 28 |
container_title | Low temperature physics (Woodbury, N.Y.) |
container_volume | 46 |
creator | Natsik, V. D. Rybalko, A. S. |
description | The observation of the thermoelectric effect, which is the spontaneous electric polarization of a cell with liquid He II during the thermal excitation of standing second-sound waves, has been confirmed [Low Temperature Physics 30, 1321 (2004)]. The relationship of this effect with the thermal and hydrodynamic properties of He II is studied in detail in the temperature range of 1.4 K < T |
doi_str_mv | 10.1063/10.0000361 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000518021400002CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348472210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-6be9f37131bfd79fc3e95dd9b6855fd2f9f5597c9b3ba4a19174b6535564d0963</originalsourceid><addsrcrecordid>eNqNkM9O3DAQxqOKSuXfpU9giRso1I5je32sVrSshMqFStwiOxkXo8RebIcVt75Cj329PgnOBlEOCOHLzHh-34z9FcVngk8J5vRLjjgfysmHYpdgiUvOiNiZck5LIcT1p2IvxluMSe7K3eLPD-_KmFSy3qnwgNINhMFDD20KtkVgTM6Qdegc0GqFlOvQjd8gm-8iUtsudEhvhbNY9eje6rCdGP_9_otSUC7aqUQm-AH1arB5F0p-Fo1Bjz24hAL8sgMcFB-N6iMcPsX94ue3s6vleXlx-X21_HpRtpSSVHIN0lBBKNGmE9K0FCTrOqn5gjHTVUYaxqRopaZa1YpIImrNGWWM1x2WnO4XR_PcdfB3I8TU3PoxuLyyqWi9qEVVEZyp45lqg48xgGnWwQ7ZqYbgZjJ1ik-WZ3gxwxvQ3sTWgmvhWZAhRha4IvXEV0s7u770o0tZevJ-6X86g_OUZ_TehxdPatadeYt-5ROP-dmy9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348472210</pqid></control><display><type>article</type><title>Non-stationary thermoelectric effect in He II and how it is affected by the thermal vibrations’ transition from laminar to the turbulent regime</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Natsik, V. D. ; Rybalko, A. S.</creator><creatorcontrib>Natsik, V. D. ; Rybalko, A. S.</creatorcontrib><description>The observation of the thermoelectric effect, which is the spontaneous electric polarization of a cell with liquid He II during the thermal excitation of standing second-sound waves, has been confirmed [Low Temperature Physics 30, 1321 (2004)]. The relationship of this effect with the thermal and hydrodynamic properties of He II is studied in detail in the temperature range of 1.4 K < T < 2 K. It is established that the dependence of the amplitude of electric potential oscillations on the excitation intensity changes significantly during the thermal vibrations’ transition from the laminar to the turbulent regime. The threshold value of the excitation power w = w0 (T) is recorded: in the region w < w0, the potential oscillations are regular and their amplitude increases in proportion to the power; at w > w0, the electric response becomes random in nature as the fluctuations increase and the amplitude decreases to zero, with a peculiar electromagnetic “noise” being observed. The experimental results are compared with the conclusions drawn from the theory of flexoelectric polarization of liquid helium. The polarization of liquid helium upon excitation of the first-sound waves, as well as pressure and temperature shock waves, has also been discussed.</description><identifier>ISSN: 1063-777X</identifier><identifier>EISSN: 1090-6517</identifier><identifier>DOI: 10.1063/10.0000361</identifier><identifier>CODEN: LTPHEG</identifier><language>eng</language><publisher>MELVILLE: AIP Publishing</publisher><subject>Amplitudes ; Electric polarization ; Excitation ; Helium isotopes ; Liquid helium ; Low temperature physics ; Physical Sciences ; Physics ; Physics, Applied ; Potential oscillations ; Science & Technology ; Shock waves ; Sound waves ; Thermoelectricity ; Variation</subject><ispartof>Low temperature physics (Woodbury, N.Y.), 2020-01, Vol.46 (1), p.28-40</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000518021400002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c331t-6be9f37131bfd79fc3e95dd9b6855fd2f9f5597c9b3ba4a19174b6535564d0963</citedby><cites>FETCH-LOGICAL-c331t-6be9f37131bfd79fc3e95dd9b6855fd2f9f5597c9b3ba4a19174b6535564d0963</cites><orcidid>0000-0002-9535-0040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ltp/article-lookup/doi/10.1063/10.0000361$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,28253,76389</link.rule.ids></links><search><creatorcontrib>Natsik, V. D.</creatorcontrib><creatorcontrib>Rybalko, A. S.</creatorcontrib><title>Non-stationary thermoelectric effect in He II and how it is affected by the thermal vibrations’ transition from laminar to the turbulent regime</title><title>Low temperature physics (Woodbury, N.Y.)</title><addtitle>LOW TEMP PHYS</addtitle><description>The observation of the thermoelectric effect, which is the spontaneous electric polarization of a cell with liquid He II during the thermal excitation of standing second-sound waves, has been confirmed [Low Temperature Physics 30, 1321 (2004)]. The relationship of this effect with the thermal and hydrodynamic properties of He II is studied in detail in the temperature range of 1.4 K < T < 2 K. It is established that the dependence of the amplitude of electric potential oscillations on the excitation intensity changes significantly during the thermal vibrations’ transition from the laminar to the turbulent regime. The threshold value of the excitation power w = w0 (T) is recorded: in the region w < w0, the potential oscillations are regular and their amplitude increases in proportion to the power; at w > w0, the electric response becomes random in nature as the fluctuations increase and the amplitude decreases to zero, with a peculiar electromagnetic “noise” being observed. The experimental results are compared with the conclusions drawn from the theory of flexoelectric polarization of liquid helium. The polarization of liquid helium upon excitation of the first-sound waves, as well as pressure and temperature shock waves, has also been discussed.</description><subject>Amplitudes</subject><subject>Electric polarization</subject><subject>Excitation</subject><subject>Helium isotopes</subject><subject>Liquid helium</subject><subject>Low temperature physics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Potential oscillations</subject><subject>Science & Technology</subject><subject>Shock waves</subject><subject>Sound waves</subject><subject>Thermoelectricity</subject><subject>Variation</subject><issn>1063-777X</issn><issn>1090-6517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkM9O3DAQxqOKSuXfpU9giRso1I5je32sVrSshMqFStwiOxkXo8RebIcVt75Cj329PgnOBlEOCOHLzHh-34z9FcVngk8J5vRLjjgfysmHYpdgiUvOiNiZck5LIcT1p2IvxluMSe7K3eLPD-_KmFSy3qnwgNINhMFDD20KtkVgTM6Qdegc0GqFlOvQjd8gm-8iUtsudEhvhbNY9eje6rCdGP_9_otSUC7aqUQm-AH1arB5F0p-Fo1Bjz24hAL8sgMcFB-N6iMcPsX94ue3s6vleXlx-X21_HpRtpSSVHIN0lBBKNGmE9K0FCTrOqn5gjHTVUYaxqRopaZa1YpIImrNGWWM1x2WnO4XR_PcdfB3I8TU3PoxuLyyqWi9qEVVEZyp45lqg48xgGnWwQ7ZqYbgZjJ1ik-WZ3gxwxvQ3sTWgmvhWZAhRha4IvXEV0s7u770o0tZevJ-6X86g_OUZ_TehxdPatadeYt-5ROP-dmy9w</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Natsik, V. D.</creator><creator>Rybalko, A. S.</creator><general>AIP Publishing</general><general>American Institute of Physics</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9535-0040</orcidid></search><sort><creationdate>202001</creationdate><title>Non-stationary thermoelectric effect in He II and how it is affected by the thermal vibrations’ transition from laminar to the turbulent regime</title><author>Natsik, V. D. ; Rybalko, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-6be9f37131bfd79fc3e95dd9b6855fd2f9f5597c9b3ba4a19174b6535564d0963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Electric polarization</topic><topic>Excitation</topic><topic>Helium isotopes</topic><topic>Liquid helium</topic><topic>Low temperature physics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Potential oscillations</topic><topic>Science & Technology</topic><topic>Shock waves</topic><topic>Sound waves</topic><topic>Thermoelectricity</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Natsik, V. D.</creatorcontrib><creatorcontrib>Rybalko, A. S.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Low temperature physics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Natsik, V. D.</au><au>Rybalko, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-stationary thermoelectric effect in He II and how it is affected by the thermal vibrations’ transition from laminar to the turbulent regime</atitle><jtitle>Low temperature physics (Woodbury, N.Y.)</jtitle><stitle>LOW TEMP PHYS</stitle><date>2020-01</date><risdate>2020</risdate><volume>46</volume><issue>1</issue><spage>28</spage><epage>40</epage><pages>28-40</pages><issn>1063-777X</issn><eissn>1090-6517</eissn><coden>LTPHEG</coden><abstract>The observation of the thermoelectric effect, which is the spontaneous electric polarization of a cell with liquid He II during the thermal excitation of standing second-sound waves, has been confirmed [Low Temperature Physics 30, 1321 (2004)]. The relationship of this effect with the thermal and hydrodynamic properties of He II is studied in detail in the temperature range of 1.4 K < T < 2 K. It is established that the dependence of the amplitude of electric potential oscillations on the excitation intensity changes significantly during the thermal vibrations’ transition from the laminar to the turbulent regime. The threshold value of the excitation power w = w0 (T) is recorded: in the region w < w0, the potential oscillations are regular and their amplitude increases in proportion to the power; at w > w0, the electric response becomes random in nature as the fluctuations increase and the amplitude decreases to zero, with a peculiar electromagnetic “noise” being observed. The experimental results are compared with the conclusions drawn from the theory of flexoelectric polarization of liquid helium. The polarization of liquid helium upon excitation of the first-sound waves, as well as pressure and temperature shock waves, has also been discussed.</abstract><cop>MELVILLE</cop><pub>AIP Publishing</pub><doi>10.1063/10.0000361</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9535-0040</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-777X |
ispartof | Low temperature physics (Woodbury, N.Y.), 2020-01, Vol.46 (1), p.28-40 |
issn | 1063-777X 1090-6517 |
language | eng |
recordid | cdi_webofscience_primary_000518021400002CitationCount |
source | AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Amplitudes Electric polarization Excitation Helium isotopes Liquid helium Low temperature physics Physical Sciences Physics Physics, Applied Potential oscillations Science & Technology Shock waves Sound waves Thermoelectricity Variation |
title | Non-stationary thermoelectric effect in He II and how it is affected by the thermal vibrations’ transition from laminar to the turbulent regime |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-stationary%20thermoelectric%20effect%20in%20He%20II%20and%20how%20it%20is%20affected%20by%20the%20thermal%20vibrations%E2%80%99%20transition%20from%20laminar%20to%20the%20turbulent%20regime&rft.jtitle=Low%20temperature%20physics%20(Woodbury,%20N.Y.)&rft.au=Natsik,%20V.%20D.&rft.date=2020-01&rft.volume=46&rft.issue=1&rft.spage=28&rft.epage=40&rft.pages=28-40&rft.issn=1063-777X&rft.eissn=1090-6517&rft.coden=LTPHEG&rft_id=info:doi/10.1063/10.0000361&rft_dat=%3Cproquest_webof%3E2348472210%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348472210&rft_id=info:pmid/&rfr_iscdi=true |