Design and Development of Magnetostrictive Actuators and Sensors for Structural Health Monitoring
Carbon Fibre Reinforced Polymer composite (CFRP) is widely used in the aerospace industry, but is prone to delamination, which is a major causes of failure. Structural Health Monitoring (SHM) systems need to be developed to determine the damage occurring within it. Our motivation is to design cost-e...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2020-01, Vol.20 (3), p.711, Article 711 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 711 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 20 |
creator | Vincent, Jamin Daniel Selvakumar Rodrigues, Michelle Leong, Zhaoyuan Morley, Nicola A. |
description | Carbon Fibre Reinforced Polymer composite (CFRP) is widely used in the aerospace industry, but is prone to delamination, which is a major causes of failure. Structural Health Monitoring (SHM) systems need to be developed to determine the damage occurring within it. Our motivation is to design cost-effective new sensors and a data acquisition system for magnetostrictive structural health monitoring of aerospace composites using a simple RLC circuit. The developed system is tested on magnetostrictive FeSiB and CoSiB actuator ribbons using a bending rig. Our results show detectable sensitivity of inductors as low as 0.6 mu H for a bending rig radii between 600 to 300 mm (equivalent to 0.8 to 1.7 mStrain), which show a strain sensitivity resolution of 0.01 mu Strain (surface area: similar to 36 mm(2)). This value is at the detectability limit of our fabricated system. The best resolution (1.86 mu Strain) was obtained from a 70-turn copper (similar to 64 mu H) wire inductor (surface area: similar to 400 mm(2)) that was paired with a FeSiB actuator. |
doi_str_mv | 10.3390/s20030711 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000517786200135CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_41ce06dc1a3b4fcc85136adde26dd01c</doaj_id><sourcerecordid>2550367525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-f7e2f421f3d76c216b04e948e047728d0d15d947f8df113ab9ce5f301df363893</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqVw4A-gSFxAaGFsJ3ZyqVRtgVZqxaFwthx7nHqVtRfbWcS_x9stq5YTJ488z7x656OqXhP4yFgPnxIFYCAIeVIdk4Y2i45SePogPqpepLQCoIyx7nl1xCgQ2vXsuFLnmNzoa-VNfY5bnMJmjT7XwdbXavSYQ8rR6ey2WJ_pPKscYrqjb9CnXWxDrG9ynEsyqqm-QDXl2_o6eFdQ58eX1TOrpoSv7t-T6seXz9-XF4urb18vl2dXC93wPi-sQGobSiwzgmtK-AAN9k2H0AhBOwOGtKZvhO2MJYSpodfYWgbEWMZZ6eWkutzrmqBWchPdWsXfMign7z5CHKWK2ekJZUM0AjeaKDY0VuuuJYwrY5ByY4DoonW619rMwxqNLhMpvT0SfZzx7laOYSsFsI7xnZl39wIx_JwxZbl2SeM0KY9hTpKyFnpCuBAFffsPugpz9GVUkrYtMC5a2hbq_Z7SMaQU0R7MEJC7I5CHIyjsm4fuD-TfrReg2wO_cAg2aYde4wEDgJYI0fEiSFi7dFllF_wyzD6X0g__X8r-AGm_zfM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550367525</pqid></control><display><type>article</type><title>Design and Development of Magnetostrictive Actuators and Sensors for Structural Health Monitoring</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vincent, Jamin Daniel Selvakumar ; Rodrigues, Michelle ; Leong, Zhaoyuan ; Morley, Nicola A.</creator><creatorcontrib>Vincent, Jamin Daniel Selvakumar ; Rodrigues, Michelle ; Leong, Zhaoyuan ; Morley, Nicola A.</creatorcontrib><description>Carbon Fibre Reinforced Polymer composite (CFRP) is widely used in the aerospace industry, but is prone to delamination, which is a major causes of failure. Structural Health Monitoring (SHM) systems need to be developed to determine the damage occurring within it. Our motivation is to design cost-effective new sensors and a data acquisition system for magnetostrictive structural health monitoring of aerospace composites using a simple RLC circuit. The developed system is tested on magnetostrictive FeSiB and CoSiB actuator ribbons using a bending rig. Our results show detectable sensitivity of inductors as low as 0.6 mu H for a bending rig radii between 600 to 300 mm (equivalent to 0.8 to 1.7 mStrain), which show a strain sensitivity resolution of 0.01 mu Strain (surface area: similar to 36 mm(2)). This value is at the detectability limit of our fabricated system. The best resolution (1.86 mu Strain) was obtained from a 70-turn copper (similar to 64 mu H) wire inductor (surface area: similar to 400 mm(2)) that was paired with a FeSiB actuator.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20030711</identifier><identifier>PMID: 32012893</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Actuators ; Aircraft ; Carbon fiber reinforced plastics ; Chemistry ; Chemistry, Analytical ; Cobalt ; composites ; Crack propagation ; data acquisition system ; Ductility ; Engineering ; Engineering, Electrical & Electronic ; Fiber composites ; Fiber reinforced polymers ; Inductors ; Instruments & Instrumentation ; Magnetic fields ; Magnetostriction ; magnetostrictive actuator ; Mechanical properties ; Physical Sciences ; Polymer matrix composites ; RLC circuits ; Science & Technology ; Sensitivity ; Sensors ; Strain gauges ; Structural health monitoring ; Technology</subject><ispartof>Sensors (Basel, Switzerland), 2020-01, Vol.20 (3), p.711, Article 711</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000517786200135</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c469t-f7e2f421f3d76c216b04e948e047728d0d15d947f8df113ab9ce5f301df363893</citedby><cites>FETCH-LOGICAL-c469t-f7e2f421f3d76c216b04e948e047728d0d15d947f8df113ab9ce5f301df363893</cites><orcidid>0000-0003-4935-2659 ; 0000-0001-6921-2122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038369/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038369/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32012893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vincent, Jamin Daniel Selvakumar</creatorcontrib><creatorcontrib>Rodrigues, Michelle</creatorcontrib><creatorcontrib>Leong, Zhaoyuan</creatorcontrib><creatorcontrib>Morley, Nicola A.</creatorcontrib><title>Design and Development of Magnetostrictive Actuators and Sensors for Structural Health Monitoring</title><title>Sensors (Basel, Switzerland)</title><addtitle>SENSORS-BASEL</addtitle><addtitle>Sensors (Basel)</addtitle><description>Carbon Fibre Reinforced Polymer composite (CFRP) is widely used in the aerospace industry, but is prone to delamination, which is a major causes of failure. Structural Health Monitoring (SHM) systems need to be developed to determine the damage occurring within it. Our motivation is to design cost-effective new sensors and a data acquisition system for magnetostrictive structural health monitoring of aerospace composites using a simple RLC circuit. The developed system is tested on magnetostrictive FeSiB and CoSiB actuator ribbons using a bending rig. Our results show detectable sensitivity of inductors as low as 0.6 mu H for a bending rig radii between 600 to 300 mm (equivalent to 0.8 to 1.7 mStrain), which show a strain sensitivity resolution of 0.01 mu Strain (surface area: similar to 36 mm(2)). This value is at the detectability limit of our fabricated system. The best resolution (1.86 mu Strain) was obtained from a 70-turn copper (similar to 64 mu H) wire inductor (surface area: similar to 400 mm(2)) that was paired with a FeSiB actuator.</description><subject>Actuators</subject><subject>Aircraft</subject><subject>Carbon fiber reinforced plastics</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Cobalt</subject><subject>composites</subject><subject>Crack propagation</subject><subject>data acquisition system</subject><subject>Ductility</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Inductors</subject><subject>Instruments & Instrumentation</subject><subject>Magnetic fields</subject><subject>Magnetostriction</subject><subject>magnetostrictive actuator</subject><subject>Mechanical properties</subject><subject>Physical Sciences</subject><subject>Polymer matrix composites</subject><subject>RLC circuits</subject><subject>Science & Technology</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Strain gauges</subject><subject>Structural health monitoring</subject><subject>Technology</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqVw4A-gSFxAaGFsJ3ZyqVRtgVZqxaFwthx7nHqVtRfbWcS_x9stq5YTJ488z7x656OqXhP4yFgPnxIFYCAIeVIdk4Y2i45SePogPqpepLQCoIyx7nl1xCgQ2vXsuFLnmNzoa-VNfY5bnMJmjT7XwdbXavSYQ8rR6ey2WJ_pPKscYrqjb9CnXWxDrG9ynEsyqqm-QDXl2_o6eFdQ58eX1TOrpoSv7t-T6seXz9-XF4urb18vl2dXC93wPi-sQGobSiwzgmtK-AAN9k2H0AhBOwOGtKZvhO2MJYSpodfYWgbEWMZZ6eWkutzrmqBWchPdWsXfMign7z5CHKWK2ekJZUM0AjeaKDY0VuuuJYwrY5ByY4DoonW619rMwxqNLhMpvT0SfZzx7laOYSsFsI7xnZl39wIx_JwxZbl2SeM0KY9hTpKyFnpCuBAFffsPugpz9GVUkrYtMC5a2hbq_Z7SMaQU0R7MEJC7I5CHIyjsm4fuD-TfrReg2wO_cAg2aYde4wEDgJYI0fEiSFi7dFllF_wyzD6X0g__X8r-AGm_zfM</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Vincent, Jamin Daniel Selvakumar</creator><creator>Rodrigues, Michelle</creator><creator>Leong, Zhaoyuan</creator><creator>Morley, Nicola A.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4935-2659</orcidid><orcidid>https://orcid.org/0000-0001-6921-2122</orcidid></search><sort><creationdate>20200128</creationdate><title>Design and Development of Magnetostrictive Actuators and Sensors for Structural Health Monitoring</title><author>Vincent, Jamin Daniel Selvakumar ; Rodrigues, Michelle ; Leong, Zhaoyuan ; Morley, Nicola A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-f7e2f421f3d76c216b04e948e047728d0d15d947f8df113ab9ce5f301df363893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Aircraft</topic><topic>Carbon fiber reinforced plastics</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Cobalt</topic><topic>composites</topic><topic>Crack propagation</topic><topic>data acquisition system</topic><topic>Ductility</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Inductors</topic><topic>Instruments & Instrumentation</topic><topic>Magnetic fields</topic><topic>Magnetostriction</topic><topic>magnetostrictive actuator</topic><topic>Mechanical properties</topic><topic>Physical Sciences</topic><topic>Polymer matrix composites</topic><topic>RLC circuits</topic><topic>Science & Technology</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Strain gauges</topic><topic>Structural health monitoring</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vincent, Jamin Daniel Selvakumar</creatorcontrib><creatorcontrib>Rodrigues, Michelle</creatorcontrib><creatorcontrib>Leong, Zhaoyuan</creatorcontrib><creatorcontrib>Morley, Nicola A.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vincent, Jamin Daniel Selvakumar</au><au>Rodrigues, Michelle</au><au>Leong, Zhaoyuan</au><au>Morley, Nicola A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Development of Magnetostrictive Actuators and Sensors for Structural Health Monitoring</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><stitle>SENSORS-BASEL</stitle><addtitle>Sensors (Basel)</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>20</volume><issue>3</issue><spage>711</spage><pages>711-</pages><artnum>711</artnum><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Carbon Fibre Reinforced Polymer composite (CFRP) is widely used in the aerospace industry, but is prone to delamination, which is a major causes of failure. Structural Health Monitoring (SHM) systems need to be developed to determine the damage occurring within it. Our motivation is to design cost-effective new sensors and a data acquisition system for magnetostrictive structural health monitoring of aerospace composites using a simple RLC circuit. The developed system is tested on magnetostrictive FeSiB and CoSiB actuator ribbons using a bending rig. Our results show detectable sensitivity of inductors as low as 0.6 mu H for a bending rig radii between 600 to 300 mm (equivalent to 0.8 to 1.7 mStrain), which show a strain sensitivity resolution of 0.01 mu Strain (surface area: similar to 36 mm(2)). This value is at the detectability limit of our fabricated system. The best resolution (1.86 mu Strain) was obtained from a 70-turn copper (similar to 64 mu H) wire inductor (surface area: similar to 400 mm(2)) that was paired with a FeSiB actuator.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32012893</pmid><doi>10.3390/s20030711</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4935-2659</orcidid><orcidid>https://orcid.org/0000-0001-6921-2122</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2020-01, Vol.20 (3), p.711, Article 711 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_webofscience_primary_000517786200135CitationCount |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Actuators Aircraft Carbon fiber reinforced plastics Chemistry Chemistry, Analytical Cobalt composites Crack propagation data acquisition system Ductility Engineering Engineering, Electrical & Electronic Fiber composites Fiber reinforced polymers Inductors Instruments & Instrumentation Magnetic fields Magnetostriction magnetostrictive actuator Mechanical properties Physical Sciences Polymer matrix composites RLC circuits Science & Technology Sensitivity Sensors Strain gauges Structural health monitoring Technology |
title | Design and Development of Magnetostrictive Actuators and Sensors for Structural Health Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Development%20of%20Magnetostrictive%20Actuators%20and%20Sensors%20for%20Structural%20Health%20Monitoring&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Vincent,%20Jamin%20Daniel%20Selvakumar&rft.date=2020-01-28&rft.volume=20&rft.issue=3&rft.spage=711&rft.pages=711-&rft.artnum=711&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20030711&rft_dat=%3Cproquest_webof%3E2550367525%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550367525&rft_id=info:pmid/32012893&rft_doaj_id=oai_doaj_org_article_41ce06dc1a3b4fcc85136adde26dd01c&rfr_iscdi=true |