Interaction mechanisms of shock waves with the boundary layer and wakes in a highly-loaded NGV using hybrid RANS/LES

Accurate predictions of Shock Waves and Boundary Layer Interaction (SWBLI) and strong Shock Waves and Wake Vortices Interaction (SWWVI) in a highly-loaded turbine propose challenges to the currently widely used Reynolds-Averaged Navier-Stokes (RANS) model. In this work, the SWBLI and the SWWVI in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of aeronautics 2020-01, Vol.33 (1), p.149-160
Hauptverfasser: BIAN, Xiutao, WANG, Qingsong, SU, Xinrong, YUAN, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate predictions of Shock Waves and Boundary Layer Interaction (SWBLI) and strong Shock Waves and Wake Vortices Interaction (SWWVI) in a highly-loaded turbine propose challenges to the currently widely used Reynolds-Averaged Navier-Stokes (RANS) model. In this work, the SWBLI and the SWWVI in a highly-loaded Nozzle Guide Vane (NGV) are studied using a hybrid RANS/LES strategy. The Turbulence Kinetic Energy (TKE) budget and the Proper Orthogonal Decomposition (POD) method are used to analyze flow mechanisms. Results show that this hybrid RANS/LES method can obtain detailed flow structures for flow mechanisms analysis. Strong shock waves induce boundary layer separation, while the presence of a separation bubble can in turn lead to a Mach reflection phenomenon. The shock waves cause trailing-edge vortices to break clearly, and the wakes, in turn, can change the shocks intensity and direction. Furthermore, the Entropy Generation Rate (EGR) is used to analyze the irreversible loss. It turns out that the SWWVI can reduce the flow field loss. There are several weak shock waves in the NGV flow field, which can increase the irreversible loss. This work offers flow mechanisms analysis and presents the EGR distribution in SWBLI and SWWVI areas in a transonic turbine blade.
ISSN:1000-9361
DOI:10.1016/j.cja.2019.07.008