Robust Hybrid Fractional Order Proportional Derivative Sliding Mode Controller for Robot Manipulator Based on Extended Grey Wolf Optimizer
This paper presents a novel robust hybrid fractional order proportional derivative sliding mode controller (HFOPDSMC) for 2-degree of freedom (2-DOF) robot manipulator based on extended grey wolf optimizer (EGWO). Sliding mode controller (SMC) is remarkably robust against the uncertainties and exter...
Gespeichert in:
Veröffentlicht in: | Robotica 2020-04, Vol.38 (4), p.605-616, Article 0263574719000882 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel robust hybrid fractional order proportional derivative sliding mode controller (HFOPDSMC) for 2-degree of freedom (2-DOF) robot manipulator based on extended grey wolf optimizer (EGWO). Sliding mode controller (SMC) is remarkably robust against the uncertainties and external disturbances and shows the valuable properties of accuracy. In this paper, a new fractional order sliding surface (FOSS) is defined. Integrating the fractional order proportional derivative controller (FOPDC) and a new sliding mode controller (FOSMC), a novel robust controller based on HFOPDSMC is proposed. The bounded model uncertainties are considered in the dynamics of the robot, and then the robustness of the controller is verified. The Lyapunov theory is utilized in order to show the stability of the proposed controller. In this paper, the EGWO is developed by adding the emphasis coefficients to the typical grey wolf optimizer (GWO). The GWO and EGWO, then, are applied to optimize the proposed control parameters which result in the optimized GWO-HFOPDSMC and EGWO-HFOPDSMC, respectively. The effectivenesses of the optimized controllers (GWO-HFOPDSMC and EGWO-HFOPDSMC) are completely verified by comparing the simulation results of the optimized controllers with the typical FOSMC and HFOPDSMC. |
---|---|
ISSN: | 0263-5747 1469-8668 |
DOI: | 10.1017/S0263574719000882 |