Mn-Doped NiMoO4 Mesoporous Nanorods/Reduced Graphene Oxide Composite for High-Performance All-Solid-State Supercapacitor
Mn-doping has great influence on the structural and electrical properties of NiMoO4, which plays an important role in determining its electrochemical activities. In this work, Mn-doped NiMoO4 was prepared. Structural characterization and theoretical calculation reveal that Mn-doped NiMoO4 (Mn0.1Ni0....
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2020-02, Vol.3 (2), p.1794-1803 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1803 |
---|---|
container_issue | 2 |
container_start_page | 1794 |
container_title | ACS applied energy materials |
container_volume | 3 |
creator | Yuan, Jingjing Yao, Dachuan Jiang, Ling Tao, Yingrui Che, Jianfei He, Guangyu Chen, Haiqun |
description | Mn-doping has great influence on the structural and electrical properties of NiMoO4, which plays an important role in determining its electrochemical activities. In this work, Mn-doped NiMoO4 was prepared. Structural characterization and theoretical calculation reveal that Mn-doped NiMoO4 (Mn0.1Ni0.9MoO4) has smaller unit cell parameters and is more reactive than NiMoO4 because of the defects produced by Mn-doping. On the basis of that, we prepared a composite consisting of Mn0.1Ni0.9MoO4 mesoporous nanorods and reduced graphene oxide (Mn0.1Ni0.9MoO4/rGO), which was assembled into a symmetrical all-solid-state device as electrode material, with alkaline poly(vinyl alcohol) as solid-state electrolyte. The device shows a good specific capacitance of 109.3 F·g–1 at 1 A·g–1 in a rather wide voltage range of 0–1.8 V, exhibits an excellent cycling stability with 96.1% of the capacitance retained after 200 cycles, and delivers a high energy density of 49.2 Wh·kg–1 at 1800 W·kg–1. The all-solid-state supercapacitor owns superior flexibility and maintains 83.6% of its initial specific capacitance under the bent condition. When tested in a three-electrode system, the Mn0.1Ni0.9MoO4/rGO composite exhibits a maximum specific capacitance of 688.9 F·g–1 at 0.5 A·g–1 that is much better than NiMoO4 and Mn0.1Ni0.9MoO4. The results show that the Mn0.1Ni0.9MoO4/rGO composite stands out as a kind of transition-metal-doped electrode material for flexible all-solid-state supercapacitors. |
doi_str_mv | 10.1021/acsaem.9b02238 |
format | Article |
fullrecord | <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000516665300062CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b909830108</sourcerecordid><originalsourceid>FETCH-LOGICAL-a256t-3db24f3c129145301ad58685bd1659c3b2a2508d5a6c95ea1ada70efd4b350a53</originalsourceid><addsrcrecordid>eNqNkb1PwzAQxS0EElXpyuwZFOqP2I3HKkCL1A9EYY4c26GukjiyE1H-e4zagZHpnnS_d7q7B8AtRg8YETyVKkjTPIgSEUKzCzAibJYmSHBy-Udfg0kIB4QQFpgTIUbguG6TR9cZDTd27bYpXJvgOufdEOBGtlHoMH0zelARWXjZ7U1r4PZotYG5azoXbG9g5Txc2s998mp81I1slYHzuk52rrY62fUyQruhM17JTirbO38DripZBzM51zH4eH56z5fJart4yeerRBLG-4TqkqQVVZgInDKKsNQs4xkrNeZMKFqSyKFMM8mVYEbGvpwhU-m0pAxJRscgO839MqWrgrIm7lZ03jbSfxfxFQxzzuNkhDjJbdzUujZ3Q9tH6_3_rZG-O9ExiuLgBt_GswqMit98ilM-xTkf-gOyB4Mr</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mn-Doped NiMoO4 Mesoporous Nanorods/Reduced Graphene Oxide Composite for High-Performance All-Solid-State Supercapacitor</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Yuan, Jingjing ; Yao, Dachuan ; Jiang, Ling ; Tao, Yingrui ; Che, Jianfei ; He, Guangyu ; Chen, Haiqun</creator><creatorcontrib>Yuan, Jingjing ; Yao, Dachuan ; Jiang, Ling ; Tao, Yingrui ; Che, Jianfei ; He, Guangyu ; Chen, Haiqun</creatorcontrib><description>Mn-doping has great influence on the structural and electrical properties of NiMoO4, which plays an important role in determining its electrochemical activities. In this work, Mn-doped NiMoO4 was prepared. Structural characterization and theoretical calculation reveal that Mn-doped NiMoO4 (Mn0.1Ni0.9MoO4) has smaller unit cell parameters and is more reactive than NiMoO4 because of the defects produced by Mn-doping. On the basis of that, we prepared a composite consisting of Mn0.1Ni0.9MoO4 mesoporous nanorods and reduced graphene oxide (Mn0.1Ni0.9MoO4/rGO), which was assembled into a symmetrical all-solid-state device as electrode material, with alkaline poly(vinyl alcohol) as solid-state electrolyte. The device shows a good specific capacitance of 109.3 F·g–1 at 1 A·g–1 in a rather wide voltage range of 0–1.8 V, exhibits an excellent cycling stability with 96.1% of the capacitance retained after 200 cycles, and delivers a high energy density of 49.2 Wh·kg–1 at 1800 W·kg–1. The all-solid-state supercapacitor owns superior flexibility and maintains 83.6% of its initial specific capacitance under the bent condition. When tested in a three-electrode system, the Mn0.1Ni0.9MoO4/rGO composite exhibits a maximum specific capacitance of 688.9 F·g–1 at 0.5 A·g–1 that is much better than NiMoO4 and Mn0.1Ni0.9MoO4. The results show that the Mn0.1Ni0.9MoO4/rGO composite stands out as a kind of transition-metal-doped electrode material for flexible all-solid-state supercapacitors.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.9b02238</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Physical ; Energy & Fuels ; Materials Science ; Materials Science, Multidisciplinary ; Physical Sciences ; Science & Technology ; Technology</subject><ispartof>ACS applied energy materials, 2020-02, Vol.3 (2), p.1794-1803</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>79</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000516665300062</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-a256t-3db24f3c129145301ad58685bd1659c3b2a2508d5a6c95ea1ada70efd4b350a53</cites><orcidid>0000-0001-7805-6395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.9b02238$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.9b02238$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27081,27929,27930,28253,56743,56793</link.rule.ids></links><search><creatorcontrib>Yuan, Jingjing</creatorcontrib><creatorcontrib>Yao, Dachuan</creatorcontrib><creatorcontrib>Jiang, Ling</creatorcontrib><creatorcontrib>Tao, Yingrui</creatorcontrib><creatorcontrib>Che, Jianfei</creatorcontrib><creatorcontrib>He, Guangyu</creatorcontrib><creatorcontrib>Chen, Haiqun</creatorcontrib><title>Mn-Doped NiMoO4 Mesoporous Nanorods/Reduced Graphene Oxide Composite for High-Performance All-Solid-State Supercapacitor</title><title>ACS applied energy materials</title><addtitle>ACS APPL ENERG MATER</addtitle><addtitle>ACS Appl. Energy Mater</addtitle><description>Mn-doping has great influence on the structural and electrical properties of NiMoO4, which plays an important role in determining its electrochemical activities. In this work, Mn-doped NiMoO4 was prepared. Structural characterization and theoretical calculation reveal that Mn-doped NiMoO4 (Mn0.1Ni0.9MoO4) has smaller unit cell parameters and is more reactive than NiMoO4 because of the defects produced by Mn-doping. On the basis of that, we prepared a composite consisting of Mn0.1Ni0.9MoO4 mesoporous nanorods and reduced graphene oxide (Mn0.1Ni0.9MoO4/rGO), which was assembled into a symmetrical all-solid-state device as electrode material, with alkaline poly(vinyl alcohol) as solid-state electrolyte. The device shows a good specific capacitance of 109.3 F·g–1 at 1 A·g–1 in a rather wide voltage range of 0–1.8 V, exhibits an excellent cycling stability with 96.1% of the capacitance retained after 200 cycles, and delivers a high energy density of 49.2 Wh·kg–1 at 1800 W·kg–1. The all-solid-state supercapacitor owns superior flexibility and maintains 83.6% of its initial specific capacitance under the bent condition. When tested in a three-electrode system, the Mn0.1Ni0.9MoO4/rGO composite exhibits a maximum specific capacitance of 688.9 F·g–1 at 0.5 A·g–1 that is much better than NiMoO4 and Mn0.1Ni0.9MoO4. The results show that the Mn0.1Ni0.9MoO4/rGO composite stands out as a kind of transition-metal-doped electrode material for flexible all-solid-state supercapacitors.</description><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Energy & Fuels</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Technology</subject><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkb1PwzAQxS0EElXpyuwZFOqP2I3HKkCL1A9EYY4c26GukjiyE1H-e4zagZHpnnS_d7q7B8AtRg8YETyVKkjTPIgSEUKzCzAibJYmSHBy-Udfg0kIB4QQFpgTIUbguG6TR9cZDTd27bYpXJvgOufdEOBGtlHoMH0zelARWXjZ7U1r4PZotYG5azoXbG9g5Txc2s998mp81I1slYHzuk52rrY62fUyQruhM17JTirbO38DripZBzM51zH4eH56z5fJart4yeerRBLG-4TqkqQVVZgInDKKsNQs4xkrNeZMKFqSyKFMM8mVYEbGvpwhU-m0pAxJRscgO839MqWrgrIm7lZ03jbSfxfxFQxzzuNkhDjJbdzUujZ3Q9tH6_3_rZG-O9ExiuLgBt_GswqMit98ilM-xTkf-gOyB4Mr</recordid><startdate>20200224</startdate><enddate>20200224</enddate><creator>Yuan, Jingjing</creator><creator>Yao, Dachuan</creator><creator>Jiang, Ling</creator><creator>Tao, Yingrui</creator><creator>Che, Jianfei</creator><creator>He, Guangyu</creator><creator>Chen, Haiqun</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><orcidid>https://orcid.org/0000-0001-7805-6395</orcidid></search><sort><creationdate>20200224</creationdate><title>Mn-Doped NiMoO4 Mesoporous Nanorods/Reduced Graphene Oxide Composite for High-Performance All-Solid-State Supercapacitor</title><author>Yuan, Jingjing ; Yao, Dachuan ; Jiang, Ling ; Tao, Yingrui ; Che, Jianfei ; He, Guangyu ; Chen, Haiqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a256t-3db24f3c129145301ad58685bd1659c3b2a2508d5a6c95ea1ada70efd4b350a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Energy & Fuels</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Jingjing</creatorcontrib><creatorcontrib>Yao, Dachuan</creatorcontrib><creatorcontrib>Jiang, Ling</creatorcontrib><creatorcontrib>Tao, Yingrui</creatorcontrib><creatorcontrib>Che, Jianfei</creatorcontrib><creatorcontrib>He, Guangyu</creatorcontrib><creatorcontrib>Chen, Haiqun</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Jingjing</au><au>Yao, Dachuan</au><au>Jiang, Ling</au><au>Tao, Yingrui</au><au>Che, Jianfei</au><au>He, Guangyu</au><au>Chen, Haiqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mn-Doped NiMoO4 Mesoporous Nanorods/Reduced Graphene Oxide Composite for High-Performance All-Solid-State Supercapacitor</atitle><jtitle>ACS applied energy materials</jtitle><stitle>ACS APPL ENERG MATER</stitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2020-02-24</date><risdate>2020</risdate><volume>3</volume><issue>2</issue><spage>1794</spage><epage>1803</epage><pages>1794-1803</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Mn-doping has great influence on the structural and electrical properties of NiMoO4, which plays an important role in determining its electrochemical activities. In this work, Mn-doped NiMoO4 was prepared. Structural characterization and theoretical calculation reveal that Mn-doped NiMoO4 (Mn0.1Ni0.9MoO4) has smaller unit cell parameters and is more reactive than NiMoO4 because of the defects produced by Mn-doping. On the basis of that, we prepared a composite consisting of Mn0.1Ni0.9MoO4 mesoporous nanorods and reduced graphene oxide (Mn0.1Ni0.9MoO4/rGO), which was assembled into a symmetrical all-solid-state device as electrode material, with alkaline poly(vinyl alcohol) as solid-state electrolyte. The device shows a good specific capacitance of 109.3 F·g–1 at 1 A·g–1 in a rather wide voltage range of 0–1.8 V, exhibits an excellent cycling stability with 96.1% of the capacitance retained after 200 cycles, and delivers a high energy density of 49.2 Wh·kg–1 at 1800 W·kg–1. The all-solid-state supercapacitor owns superior flexibility and maintains 83.6% of its initial specific capacitance under the bent condition. When tested in a three-electrode system, the Mn0.1Ni0.9MoO4/rGO composite exhibits a maximum specific capacitance of 688.9 F·g–1 at 0.5 A·g–1 that is much better than NiMoO4 and Mn0.1Ni0.9MoO4. The results show that the Mn0.1Ni0.9MoO4/rGO composite stands out as a kind of transition-metal-doped electrode material for flexible all-solid-state supercapacitors.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><doi>10.1021/acsaem.9b02238</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7805-6395</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2020-02, Vol.3 (2), p.1794-1803 |
issn | 2574-0962 2574-0962 |
language | eng |
recordid | cdi_webofscience_primary_000516665300062CitationCount |
source | ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Chemistry Chemistry, Physical Energy & Fuels Materials Science Materials Science, Multidisciplinary Physical Sciences Science & Technology Technology |
title | Mn-Doped NiMoO4 Mesoporous Nanorods/Reduced Graphene Oxide Composite for High-Performance All-Solid-State Supercapacitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T09%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mn-Doped%20NiMoO4%20Mesoporous%20Nanorods/Reduced%20Graphene%20Oxide%20Composite%20for%20High-Performance%20All-Solid-State%20Supercapacitor&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Yuan,%20Jingjing&rft.date=2020-02-24&rft.volume=3&rft.issue=2&rft.spage=1794&rft.epage=1803&rft.pages=1794-1803&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.9b02238&rft_dat=%3Cacs_webof%3Eb909830108%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |