Understanding the Formation of Heartwood in Larch Using Synchrotron Infrared Imaging Combined With Multivariate Analysis and Atomic Force Microscope Infrared Spectroscopy

Formation of extractive-rich heartwood is a process in live trees that make them and the wood obtained from them more resistant to fungal degradation. Despite the importance of this natural mechanism, little is known about the deposition pathways and cellular level distribution of extractives. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in plant science 2020-02, Vol.10, p.1701-1701, Article 1701
Hauptverfasser: Piqueras, Sara, Fuchtner, Sophie, Rocha de Oliveira, Rodrigo, Gomez-Sanchez, Adrian, Jelavic, Stanislav, Keplinger, Tobias, de Juan, Anna, Thygesen, Lisbeth Garbrecht
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1701
container_issue
container_start_page 1701
container_title Frontiers in plant science
container_volume 10
creator Piqueras, Sara
Fuchtner, Sophie
Rocha de Oliveira, Rodrigo
Gomez-Sanchez, Adrian
Jelavic, Stanislav
Keplinger, Tobias
de Juan, Anna
Thygesen, Lisbeth Garbrecht
description Formation of extractive-rich heartwood is a process in live trees that make them and the wood obtained from them more resistant to fungal degradation. Despite the importance of this natural mechanism, little is known about the deposition pathways and cellular level distribution of extractives. Here we follow heartwood formation in Larix gmelinii var. Japonica by use of synchrotron infrared images analyzed by the unmixing method Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS). A subset of the specimens was also analyzed using atomic force microscopy infrared spectroscopy. The main spectral changes observed in the transition zone when going from sapwood to heartwood was a decrease in the intensity of a peak at approximately 1660 cm(-1) and an increase in a peak at approximately 1640 cm(-1). There are several possible interpretations of this observation. One possibility that is supported by the MCR-ALS unmixing is that heartwood formation in larch is a type II or Juglans-type of heartwood formation, where phenolic precursors to extractives accumulate in the sapwood rays. They are then oxidized and/or condensed in the transition zone and spread to the neighboring cells in the heartwood.
doi_str_mv 10.3389/fpls.2019.01701
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000515709600001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8215014085914f3a834ab64aec60be8f</doaj_id><sourcerecordid>2369886392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-4126e9817115a519d442a27ad5b036c61f4c79c5a9b5ebcbedda7cb5ab0369c73</originalsourceid><addsrcrecordid>eNqNkkFr2zAUx83YWEvX825Dx8FIKtmSbV0GIaxrIGWHLmw38Sw_Jyq2lElKS77SPuXkpMva23yRee_3_k-IX5a9Z3RaFLW86rZ9mOaUySllFWWvsnNWlnzCy_zn62f_Z9llCPc0fYJSKau32VmRM1YVeX2e_V7ZFn2IYFtj1yRukFw7P0A0zhLXkRsEHx-da4mxZAleb8gqjOTd3uqNd9EnbmE7Dx5bshhgPTbnbmiMTYUfJm7I7a6P5gG8gYhkZqHfBxNI2khm0Q1Gjxs1klujvQvabfFf4N0WdTxW9--yNx30AS-fzotsdf3l-_xmsvz2dTGfLSeaCxknnOUlyppVjAkQTLac55BX0IqGFqUuWcd1JbUA2QhsdINtC5VuBIxtqaviIlscc1sH92rrzQB-rxwYdSg4v1bpTYzuUdU5E5RxWgvJeFdAXXBoSg6oS9pg3aWsz8es7a4ZsNVoo4f-RejLjjUbtXYPqqK0LuoyBXx8CvDu1w5DVIMJGvseLLpdUHm6c504mSf06oiOzxg8dqc1jKpRGDUKo0Zh1EGYNPHh-e1O_F89ElAfgUdsXBe0QavxhI1GMVFRWY5ysbmJB23mbmdjGv30_6PFH9B14dk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369886392</pqid></control><display><type>article</type><title>Understanding the Formation of Heartwood in Larch Using Synchrotron Infrared Imaging Combined With Multivariate Analysis and Atomic Force Microscope Infrared Spectroscopy</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Piqueras, Sara ; Fuchtner, Sophie ; Rocha de Oliveira, Rodrigo ; Gomez-Sanchez, Adrian ; Jelavic, Stanislav ; Keplinger, Tobias ; de Juan, Anna ; Thygesen, Lisbeth Garbrecht</creator><creatorcontrib>Piqueras, Sara ; Fuchtner, Sophie ; Rocha de Oliveira, Rodrigo ; Gomez-Sanchez, Adrian ; Jelavic, Stanislav ; Keplinger, Tobias ; de Juan, Anna ; Thygesen, Lisbeth Garbrecht</creatorcontrib><description>Formation of extractive-rich heartwood is a process in live trees that make them and the wood obtained from them more resistant to fungal degradation. Despite the importance of this natural mechanism, little is known about the deposition pathways and cellular level distribution of extractives. Here we follow heartwood formation in Larix gmelinii var. Japonica by use of synchrotron infrared images analyzed by the unmixing method Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS). A subset of the specimens was also analyzed using atomic force microscopy infrared spectroscopy. The main spectral changes observed in the transition zone when going from sapwood to heartwood was a decrease in the intensity of a peak at approximately 1660 cm(-1) and an increase in a peak at approximately 1640 cm(-1). There are several possible interpretations of this observation. One possibility that is supported by the MCR-ALS unmixing is that heartwood formation in larch is a type II or Juglans-type of heartwood formation, where phenolic precursors to extractives accumulate in the sapwood rays. They are then oxidized and/or condensed in the transition zone and spread to the neighboring cells in the heartwood.</description><identifier>ISSN: 1664-462X</identifier><identifier>EISSN: 1664-462X</identifier><identifier>DOI: 10.3389/fpls.2019.01701</identifier><identifier>PMID: 32117328</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>Atomic Force Microscope Infrared Spectroscopy ; extractives ; heartwood formation ; larch ; Life Sciences &amp; Biomedicine ; Multivariate Curve Resolution – Alternating Least Squares ; Plant Science ; Plant Sciences ; Science &amp; Technology ; synchrotron infrared imaging</subject><ispartof>Frontiers in plant science, 2020-02, Vol.10, p.1701-1701, Article 1701</ispartof><rights>Copyright © 2020 Piqueras, Füchtner, Rocha de Oliveira, Gómez-Sánchez, Jelavić, Keplinger, de Juan and Thygesen.</rights><rights>Copyright © 2020 Piqueras, Füchtner, Rocha de Oliveira, Gómez-Sánchez, Jelavić, Keplinger, de Juan and Thygesen 2020 Piqueras, Füchtner, Rocha de Oliveira, Gómez-Sánchez, Jelavić, Keplinger, de Juan and Thygesen</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000515709600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c459t-4126e9817115a519d442a27ad5b036c61f4c79c5a9b5ebcbedda7cb5ab0369c73</citedby><cites>FETCH-LOGICAL-c459t-4126e9817115a519d442a27ad5b036c61f4c79c5a9b5ebcbedda7cb5ab0369c73</cites><orcidid>0000-0001-7854-3724 ; 0000-0002-8919-9321 ; 0000-0002-6662-2019 ; 0000-0002-4309-5236 ; 0000-0001-9685-7460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008386/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008386/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32117328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Piqueras, Sara</creatorcontrib><creatorcontrib>Fuchtner, Sophie</creatorcontrib><creatorcontrib>Rocha de Oliveira, Rodrigo</creatorcontrib><creatorcontrib>Gomez-Sanchez, Adrian</creatorcontrib><creatorcontrib>Jelavic, Stanislav</creatorcontrib><creatorcontrib>Keplinger, Tobias</creatorcontrib><creatorcontrib>de Juan, Anna</creatorcontrib><creatorcontrib>Thygesen, Lisbeth Garbrecht</creatorcontrib><title>Understanding the Formation of Heartwood in Larch Using Synchrotron Infrared Imaging Combined With Multivariate Analysis and Atomic Force Microscope Infrared Spectroscopy</title><title>Frontiers in plant science</title><addtitle>FRONT PLANT SCI</addtitle><addtitle>Front Plant Sci</addtitle><description>Formation of extractive-rich heartwood is a process in live trees that make them and the wood obtained from them more resistant to fungal degradation. Despite the importance of this natural mechanism, little is known about the deposition pathways and cellular level distribution of extractives. Here we follow heartwood formation in Larix gmelinii var. Japonica by use of synchrotron infrared images analyzed by the unmixing method Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS). A subset of the specimens was also analyzed using atomic force microscopy infrared spectroscopy. The main spectral changes observed in the transition zone when going from sapwood to heartwood was a decrease in the intensity of a peak at approximately 1660 cm(-1) and an increase in a peak at approximately 1640 cm(-1). There are several possible interpretations of this observation. One possibility that is supported by the MCR-ALS unmixing is that heartwood formation in larch is a type II or Juglans-type of heartwood formation, where phenolic precursors to extractives accumulate in the sapwood rays. They are then oxidized and/or condensed in the transition zone and spread to the neighboring cells in the heartwood.</description><subject>Atomic Force Microscope Infrared Spectroscopy</subject><subject>extractives</subject><subject>heartwood formation</subject><subject>larch</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Multivariate Curve Resolution – Alternating Least Squares</subject><subject>Plant Science</subject><subject>Plant Sciences</subject><subject>Science &amp; Technology</subject><subject>synchrotron infrared imaging</subject><issn>1664-462X</issn><issn>1664-462X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkkFr2zAUx83YWEvX825Dx8FIKtmSbV0GIaxrIGWHLmw38Sw_Jyq2lElKS77SPuXkpMva23yRee_3_k-IX5a9Z3RaFLW86rZ9mOaUySllFWWvsnNWlnzCy_zn62f_Z9llCPc0fYJSKau32VmRM1YVeX2e_V7ZFn2IYFtj1yRukFw7P0A0zhLXkRsEHx-da4mxZAleb8gqjOTd3uqNd9EnbmE7Dx5bshhgPTbnbmiMTYUfJm7I7a6P5gG8gYhkZqHfBxNI2khm0Q1Gjxs1klujvQvabfFf4N0WdTxW9--yNx30AS-fzotsdf3l-_xmsvz2dTGfLSeaCxknnOUlyppVjAkQTLac55BX0IqGFqUuWcd1JbUA2QhsdINtC5VuBIxtqaviIlscc1sH92rrzQB-rxwYdSg4v1bpTYzuUdU5E5RxWgvJeFdAXXBoSg6oS9pg3aWsz8es7a4ZsNVoo4f-RejLjjUbtXYPqqK0LuoyBXx8CvDu1w5DVIMJGvseLLpdUHm6c504mSf06oiOzxg8dqc1jKpRGDUKo0Zh1EGYNPHh-e1O_F89ElAfgUdsXBe0QavxhI1GMVFRWY5ysbmJB23mbmdjGv30_6PFH9B14dk</recordid><startdate>20200203</startdate><enddate>20200203</enddate><creator>Piqueras, Sara</creator><creator>Fuchtner, Sophie</creator><creator>Rocha de Oliveira, Rodrigo</creator><creator>Gomez-Sanchez, Adrian</creator><creator>Jelavic, Stanislav</creator><creator>Keplinger, Tobias</creator><creator>de Juan, Anna</creator><creator>Thygesen, Lisbeth Garbrecht</creator><general>Frontiers Media Sa</general><general>Frontiers Media S.A</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7854-3724</orcidid><orcidid>https://orcid.org/0000-0002-8919-9321</orcidid><orcidid>https://orcid.org/0000-0002-6662-2019</orcidid><orcidid>https://orcid.org/0000-0002-4309-5236</orcidid><orcidid>https://orcid.org/0000-0001-9685-7460</orcidid></search><sort><creationdate>20200203</creationdate><title>Understanding the Formation of Heartwood in Larch Using Synchrotron Infrared Imaging Combined With Multivariate Analysis and Atomic Force Microscope Infrared Spectroscopy</title><author>Piqueras, Sara ; Fuchtner, Sophie ; Rocha de Oliveira, Rodrigo ; Gomez-Sanchez, Adrian ; Jelavic, Stanislav ; Keplinger, Tobias ; de Juan, Anna ; Thygesen, Lisbeth Garbrecht</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-4126e9817115a519d442a27ad5b036c61f4c79c5a9b5ebcbedda7cb5ab0369c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic Force Microscope Infrared Spectroscopy</topic><topic>extractives</topic><topic>heartwood formation</topic><topic>larch</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Multivariate Curve Resolution – Alternating Least Squares</topic><topic>Plant Science</topic><topic>Plant Sciences</topic><topic>Science &amp; Technology</topic><topic>synchrotron infrared imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piqueras, Sara</creatorcontrib><creatorcontrib>Fuchtner, Sophie</creatorcontrib><creatorcontrib>Rocha de Oliveira, Rodrigo</creatorcontrib><creatorcontrib>Gomez-Sanchez, Adrian</creatorcontrib><creatorcontrib>Jelavic, Stanislav</creatorcontrib><creatorcontrib>Keplinger, Tobias</creatorcontrib><creatorcontrib>de Juan, Anna</creatorcontrib><creatorcontrib>Thygesen, Lisbeth Garbrecht</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piqueras, Sara</au><au>Fuchtner, Sophie</au><au>Rocha de Oliveira, Rodrigo</au><au>Gomez-Sanchez, Adrian</au><au>Jelavic, Stanislav</au><au>Keplinger, Tobias</au><au>de Juan, Anna</au><au>Thygesen, Lisbeth Garbrecht</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Formation of Heartwood in Larch Using Synchrotron Infrared Imaging Combined With Multivariate Analysis and Atomic Force Microscope Infrared Spectroscopy</atitle><jtitle>Frontiers in plant science</jtitle><stitle>FRONT PLANT SCI</stitle><addtitle>Front Plant Sci</addtitle><date>2020-02-03</date><risdate>2020</risdate><volume>10</volume><spage>1701</spage><epage>1701</epage><pages>1701-1701</pages><artnum>1701</artnum><issn>1664-462X</issn><eissn>1664-462X</eissn><abstract>Formation of extractive-rich heartwood is a process in live trees that make them and the wood obtained from them more resistant to fungal degradation. Despite the importance of this natural mechanism, little is known about the deposition pathways and cellular level distribution of extractives. Here we follow heartwood formation in Larix gmelinii var. Japonica by use of synchrotron infrared images analyzed by the unmixing method Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS). A subset of the specimens was also analyzed using atomic force microscopy infrared spectroscopy. The main spectral changes observed in the transition zone when going from sapwood to heartwood was a decrease in the intensity of a peak at approximately 1660 cm(-1) and an increase in a peak at approximately 1640 cm(-1). There are several possible interpretations of this observation. One possibility that is supported by the MCR-ALS unmixing is that heartwood formation in larch is a type II or Juglans-type of heartwood formation, where phenolic precursors to extractives accumulate in the sapwood rays. They are then oxidized and/or condensed in the transition zone and spread to the neighboring cells in the heartwood.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>32117328</pmid><doi>10.3389/fpls.2019.01701</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7854-3724</orcidid><orcidid>https://orcid.org/0000-0002-8919-9321</orcidid><orcidid>https://orcid.org/0000-0002-6662-2019</orcidid><orcidid>https://orcid.org/0000-0002-4309-5236</orcidid><orcidid>https://orcid.org/0000-0001-9685-7460</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-462X
ispartof Frontiers in plant science, 2020-02, Vol.10, p.1701-1701, Article 1701
issn 1664-462X
1664-462X
language eng
recordid cdi_webofscience_primary_000515709600001CitationCount
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Atomic Force Microscope Infrared Spectroscopy
extractives
heartwood formation
larch
Life Sciences & Biomedicine
Multivariate Curve Resolution – Alternating Least Squares
Plant Science
Plant Sciences
Science & Technology
synchrotron infrared imaging
title Understanding the Formation of Heartwood in Larch Using Synchrotron Infrared Imaging Combined With Multivariate Analysis and Atomic Force Microscope Infrared Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Formation%20of%20Heartwood%20in%20Larch%20Using%20Synchrotron%20Infrared%20Imaging%20Combined%20With%20Multivariate%20Analysis%20and%20Atomic%20Force%20Microscope%20Infrared%20Spectroscopy&rft.jtitle=Frontiers%20in%20plant%20science&rft.au=Piqueras,%20Sara&rft.date=2020-02-03&rft.volume=10&rft.spage=1701&rft.epage=1701&rft.pages=1701-1701&rft.artnum=1701&rft.issn=1664-462X&rft.eissn=1664-462X&rft_id=info:doi/10.3389/fpls.2019.01701&rft_dat=%3Cproquest_webof%3E2369886392%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369886392&rft_id=info:pmid/32117328&rft_doaj_id=oai_doaj_org_article_8215014085914f3a834ab64aec60be8f&rfr_iscdi=true