Enhancing Neurogenesis of Neural Stem Cells Using Homogeneous Nanohole Pattern-Modified Conductive Platform
Biocompatible platforms, wherein cells attach and grow, are important for controlling cytoskeletal dynamics and steering stem cell functions, including differentiation. Among various components, membrane integrins play a key role in focal adhesion of cells (18-20 nm in size) and are, thus, highly se...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2019-12, Vol.21 (1), p.191, Article 191 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biocompatible platforms, wherein cells attach and grow, are important for controlling cytoskeletal dynamics and steering stem cell functions, including differentiation. Among various components, membrane integrins play a key role in focal adhesion of cells (18-20 nm in size) and are, thus, highly sensitive to the nanotopographical features of underlying substrates. Hence, it is necessary to develop a platform/technique that can provide high flexibility in controlling nanostructure sizes. We report a platform modified with homogeneous nanohole patterns, effective in guiding neurogenesis of mouse neural stem cells (mNSCs). Sizes of nanoholes were easily generated and varied using laser interference lithography (LIL), by changing the incident angles of light interference on substrates. Among three different nanohole patterns fabricated on conductive transparent electrodes, 500 nm-sized nanoholes showed the best performance for cell adhesion and spreading, based on F-actin and lamellipodia/filopodia expression. Enhanced biocompatibility and cell adhesion of these nanohole patterns ultimately resulted in the enhanced neurogenesis of mNSCs, based on the mRNAs expression level of the mNSCs marker and several neuronal markers. Therefore, platforms modified with homogeneous nanohole patterns fabricated by LIL are promising for the precise tuning of nanostructures in tissue culture platforms and useful for controlling various differentiation lineages of stem cells. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms21010191 |