Temperature gradient characteristics and effect on optimal thermoelectric performance in exhaust power-generation systems

•A nonisothermal thermoelectric model is developed using the finite element method.•Temperature gradient at different work conditions is shown by fitting correlations.•Thermoelectric material properties’ temperature dependence is considered.•An effective finite element calculation method is obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2020-03, Vol.261, p.114366, Article 114366
Hauptverfasser: He, Wei, Guo, Rui, Liu, Shengchun, Zhu, Kai, Wang, Shixue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114366
container_title Applied energy
container_volume 261
creator He, Wei
Guo, Rui
Liu, Shengchun
Zhu, Kai
Wang, Shixue
description •A nonisothermal thermoelectric model is developed using the finite element method.•Temperature gradient at different work conditions is shown by fitting correlations.•Thermoelectric material properties’ temperature dependence is considered.•An effective finite element calculation method is obtained with high precision.•It is feasible to take one thermoelectric module as one finite calculation element. An obvious temperature gradient is apparent when engine exhaust gas with low mass flow and a high temperature passes through a thermoelectric generator system to recover thermal energy. Aiming to explore the temperature gradient characteristics and its effect on optimal thermoelectric performance in an exhaust power-generation system, a nonisothermal thermoelectric numerical model was developed using the finite-element method. A commercial-type thermoelectric material was used in the numerical calculation. When the maximum net power was obtained, the corresponding temperature-gradient characteristics under different exhaust mass flow rates and temperatures were examined for an exhaust power-generation system. Moreover, the optimal structural dimensions and maximum net power were investigated with consideration of the temperature dependence of the physical properties of the thermoelectric materials. Additionally, different finite-element conditions were compared to obtain an effective calculation method. The results indicated that the temperature gradient is significantly affected by the exhaust temperature but not the mass flow rate and a linearly increases with an exhaust temperature increase by introducing fitting correlations. Constant physical thermoelectric parameters can be used when the qualitative operating temperature of the semiconductor material is suitably chosen. It is recommended to use one commercial thermoelectric module as one finite calculation element instead of using one PN couple, because this facilitates convenient and high-precision calculations.
doi_str_mv 10.1016/j.apenergy.2019.114366
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000515117500038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261919320537</els_id><sourcerecordid>S0306261919320537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-6099449dfa47e6dada9821fc1362fb4b0fa195534937abcaa12b09f91ec49ce43</originalsourceid><addsrcrecordid>eNqNkMFqGzEQhkVpoW7aVyi6h3U12l15dWswaRoI5JKcxax2ZMt4V4skN_HbV67TXJPTDMP_DT8fY99BLEGA-rFb4kwTxc1xKQXoJUBTK_WBLaBbyUoDdB_ZQtRCVVKB_sy-pLQTQkiQYsGODzTOFDEfIvFNxMHTlLndYkSbKfqUvU0cp4GTc2QzDxMPc_Yj7nneUhwD7cs5esvLGxfiiJMl7idOz1s8pMzn8ESx2pwaYvYFT8eUaUxf2SeH-0TfXuYFe_x1_bD-Xd3d39yur-4qW4PMlRJaN40eHDYrUgMOqDsJzkKtpOubXjgE3bZ1o-sV9hYRZC-000C20Zaa-oKp818bQ0qRnJljqR-PBoQ5CTQ781-gOQk0Z4EFvDyDT9QHl2wxY-kVLgZbaAFWbdnqrqS796fXPv9zsQ6HKRf05xmlouGPp2he8MHH4tYMwb_V9S_NxKJb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Temperature gradient characteristics and effect on optimal thermoelectric performance in exhaust power-generation systems</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>He, Wei ; Guo, Rui ; Liu, Shengchun ; Zhu, Kai ; Wang, Shixue</creator><creatorcontrib>He, Wei ; Guo, Rui ; Liu, Shengchun ; Zhu, Kai ; Wang, Shixue</creatorcontrib><description>•A nonisothermal thermoelectric model is developed using the finite element method.•Temperature gradient at different work conditions is shown by fitting correlations.•Thermoelectric material properties’ temperature dependence is considered.•An effective finite element calculation method is obtained with high precision.•It is feasible to take one thermoelectric module as one finite calculation element. An obvious temperature gradient is apparent when engine exhaust gas with low mass flow and a high temperature passes through a thermoelectric generator system to recover thermal energy. Aiming to explore the temperature gradient characteristics and its effect on optimal thermoelectric performance in an exhaust power-generation system, a nonisothermal thermoelectric numerical model was developed using the finite-element method. A commercial-type thermoelectric material was used in the numerical calculation. When the maximum net power was obtained, the corresponding temperature-gradient characteristics under different exhaust mass flow rates and temperatures were examined for an exhaust power-generation system. Moreover, the optimal structural dimensions and maximum net power were investigated with consideration of the temperature dependence of the physical properties of the thermoelectric materials. Additionally, different finite-element conditions were compared to obtain an effective calculation method. The results indicated that the temperature gradient is significantly affected by the exhaust temperature but not the mass flow rate and a linearly increases with an exhaust temperature increase by introducing fitting correlations. Constant physical thermoelectric parameters can be used when the qualitative operating temperature of the semiconductor material is suitably chosen. It is recommended to use one commercial thermoelectric module as one finite calculation element instead of using one PN couple, because this facilitates convenient and high-precision calculations.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2019.114366</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Energy &amp; Fuels ; Engineering ; Engineering, Chemical ; Exhaust ; Nonisothermal ; Power generation ; Science &amp; Technology ; Technology ; Temperature gradient ; Thermoelectric</subject><ispartof>Applied energy, 2020-03, Vol.261, p.114366, Article 114366</ispartof><rights>2019 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>30</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000515117500038</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c312t-6099449dfa47e6dada9821fc1362fb4b0fa195534937abcaa12b09f91ec49ce43</citedby><cites>FETCH-LOGICAL-c312t-6099449dfa47e6dada9821fc1362fb4b0fa195534937abcaa12b09f91ec49ce43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apenergy.2019.114366$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28253,46000</link.rule.ids></links><search><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><creatorcontrib>Liu, Shengchun</creatorcontrib><creatorcontrib>Zhu, Kai</creatorcontrib><creatorcontrib>Wang, Shixue</creatorcontrib><title>Temperature gradient characteristics and effect on optimal thermoelectric performance in exhaust power-generation systems</title><title>Applied energy</title><addtitle>APPL ENERG</addtitle><description>•A nonisothermal thermoelectric model is developed using the finite element method.•Temperature gradient at different work conditions is shown by fitting correlations.•Thermoelectric material properties’ temperature dependence is considered.•An effective finite element calculation method is obtained with high precision.•It is feasible to take one thermoelectric module as one finite calculation element. An obvious temperature gradient is apparent when engine exhaust gas with low mass flow and a high temperature passes through a thermoelectric generator system to recover thermal energy. Aiming to explore the temperature gradient characteristics and its effect on optimal thermoelectric performance in an exhaust power-generation system, a nonisothermal thermoelectric numerical model was developed using the finite-element method. A commercial-type thermoelectric material was used in the numerical calculation. When the maximum net power was obtained, the corresponding temperature-gradient characteristics under different exhaust mass flow rates and temperatures were examined for an exhaust power-generation system. Moreover, the optimal structural dimensions and maximum net power were investigated with consideration of the temperature dependence of the physical properties of the thermoelectric materials. Additionally, different finite-element conditions were compared to obtain an effective calculation method. The results indicated that the temperature gradient is significantly affected by the exhaust temperature but not the mass flow rate and a linearly increases with an exhaust temperature increase by introducing fitting correlations. Constant physical thermoelectric parameters can be used when the qualitative operating temperature of the semiconductor material is suitably chosen. It is recommended to use one commercial thermoelectric module as one finite calculation element instead of using one PN couple, because this facilitates convenient and high-precision calculations.</description><subject>Energy &amp; Fuels</subject><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Exhaust</subject><subject>Nonisothermal</subject><subject>Power generation</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Temperature gradient</subject><subject>Thermoelectric</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMFqGzEQhkVpoW7aVyi6h3U12l15dWswaRoI5JKcxax2ZMt4V4skN_HbV67TXJPTDMP_DT8fY99BLEGA-rFb4kwTxc1xKQXoJUBTK_WBLaBbyUoDdB_ZQtRCVVKB_sy-pLQTQkiQYsGODzTOFDEfIvFNxMHTlLndYkSbKfqUvU0cp4GTc2QzDxMPc_Yj7nneUhwD7cs5esvLGxfiiJMl7idOz1s8pMzn8ESx2pwaYvYFT8eUaUxf2SeH-0TfXuYFe_x1_bD-Xd3d39yur-4qW4PMlRJaN40eHDYrUgMOqDsJzkKtpOubXjgE3bZ1o-sV9hYRZC-000C20Zaa-oKp818bQ0qRnJljqR-PBoQ5CTQ781-gOQk0Z4EFvDyDT9QHl2wxY-kVLgZbaAFWbdnqrqS796fXPv9zsQ6HKRf05xmlouGPp2he8MHH4tYMwb_V9S_NxKJb</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>He, Wei</creator><creator>Guo, Rui</creator><creator>Liu, Shengchun</creator><creator>Zhu, Kai</creator><creator>Wang, Shixue</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>Temperature gradient characteristics and effect on optimal thermoelectric performance in exhaust power-generation systems</title><author>He, Wei ; Guo, Rui ; Liu, Shengchun ; Zhu, Kai ; Wang, Shixue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-6099449dfa47e6dada9821fc1362fb4b0fa195534937abcaa12b09f91ec49ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy &amp; Fuels</topic><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Exhaust</topic><topic>Nonisothermal</topic><topic>Power generation</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Temperature gradient</topic><topic>Thermoelectric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><creatorcontrib>Liu, Shengchun</creatorcontrib><creatorcontrib>Zhu, Kai</creatorcontrib><creatorcontrib>Wang, Shixue</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Wei</au><au>Guo, Rui</au><au>Liu, Shengchun</au><au>Zhu, Kai</au><au>Wang, Shixue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature gradient characteristics and effect on optimal thermoelectric performance in exhaust power-generation systems</atitle><jtitle>Applied energy</jtitle><stitle>APPL ENERG</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>261</volume><spage>114366</spage><pages>114366-</pages><artnum>114366</artnum><issn>0306-2619</issn><eissn>1872-9118</eissn><abstract>•A nonisothermal thermoelectric model is developed using the finite element method.•Temperature gradient at different work conditions is shown by fitting correlations.•Thermoelectric material properties’ temperature dependence is considered.•An effective finite element calculation method is obtained with high precision.•It is feasible to take one thermoelectric module as one finite calculation element. An obvious temperature gradient is apparent when engine exhaust gas with low mass flow and a high temperature passes through a thermoelectric generator system to recover thermal energy. Aiming to explore the temperature gradient characteristics and its effect on optimal thermoelectric performance in an exhaust power-generation system, a nonisothermal thermoelectric numerical model was developed using the finite-element method. A commercial-type thermoelectric material was used in the numerical calculation. When the maximum net power was obtained, the corresponding temperature-gradient characteristics under different exhaust mass flow rates and temperatures were examined for an exhaust power-generation system. Moreover, the optimal structural dimensions and maximum net power were investigated with consideration of the temperature dependence of the physical properties of the thermoelectric materials. Additionally, different finite-element conditions were compared to obtain an effective calculation method. The results indicated that the temperature gradient is significantly affected by the exhaust temperature but not the mass flow rate and a linearly increases with an exhaust temperature increase by introducing fitting correlations. Constant physical thermoelectric parameters can be used when the qualitative operating temperature of the semiconductor material is suitably chosen. It is recommended to use one commercial thermoelectric module as one finite calculation element instead of using one PN couple, because this facilitates convenient and high-precision calculations.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2019.114366</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2020-03, Vol.261, p.114366, Article 114366
issn 0306-2619
1872-9118
language eng
recordid cdi_webofscience_primary_000515117500038
source ScienceDirect Journals (5 years ago - present); Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Energy & Fuels
Engineering
Engineering, Chemical
Exhaust
Nonisothermal
Power generation
Science & Technology
Technology
Temperature gradient
Thermoelectric
title Temperature gradient characteristics and effect on optimal thermoelectric performance in exhaust power-generation systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T08%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20gradient%20characteristics%20and%20effect%20on%20optimal%20thermoelectric%20performance%20in%20exhaust%20power-generation%20systems&rft.jtitle=Applied%20energy&rft.au=He,%20Wei&rft.date=2020-03-01&rft.volume=261&rft.spage=114366&rft.pages=114366-&rft.artnum=114366&rft.issn=0306-2619&rft.eissn=1872-9118&rft_id=info:doi/10.1016/j.apenergy.2019.114366&rft_dat=%3Celsevier_webof%3ES0306261919320537%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0306261919320537&rfr_iscdi=true