A computational genome-wide analysis of long terminal repeats retrotransposon expression in sunflower roots (Helianthus annuus L.)

Long terminal repeats (LTR) retrotransposons have a major role in determining genome size, structure and function, thanks to their ability to transpose. We performed a meta-analysis of LTR-retrotransposon expression in roots of sunflower plantlets treated with different plant hormones, chemicals and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetica 2020-02, Vol.148 (1), p.13-23
Hauptverfasser: Mascagni, Flavia, Vangelisti, Alberto, Usai, Gabriele, Giordani, Tommaso, Cavallini, Andrea, Natali, Lucia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 1
container_start_page 13
container_title Genetica
container_volume 148
creator Mascagni, Flavia
Vangelisti, Alberto
Usai, Gabriele
Giordani, Tommaso
Cavallini, Andrea
Natali, Lucia
description Long terminal repeats (LTR) retrotransposons have a major role in determining genome size, structure and function, thanks to their ability to transpose. We performed a meta-analysis of LTR-retrotransposon expression in roots of sunflower plantlets treated with different plant hormones, chemicals and NaCl. By using Illumina cDNA libraries, available from public repositories, we measured the number of reads matching the retrotranscriptase domains isolated from a whole genome library of retrotransposons. LTR-retrotransposons resulted in general barely expressed, except for 4 elements, all belonging to the AleII lineage, which showed high transcription levels in roots of both control and treated plants. The expression of retrotransposons in treated plants was slightly higher than in the control. Transcribed elements belonged to specific chromosomal loci and were not abundant in the genome. A few elements resulted differentially expressed depending on the treatment. Results suggest that, although most retrotransposons are not expressed, the transcription of such elements is related to their abundance, to their position in the chromosome and to their lineage.
doi_str_mv 10.1007/s10709-020-00085-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2343048937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356822886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-fd0975b60735994796eef2134ad541ae94f86a345dec5e5738ce7369c45e277f3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS1ERaeFF2CBLLFpFy52_L-sKmiRRmIDa8tNboZUiR18E5Vu--R4OgUkFqyOZH_3-Ocj5K3gF4Jz-wEFt9wz3nDGOXeaqRdkI7SVzDhtX5IN58IwY7k9JieIdxXy1vhX5FgKb7iwfkMeL2mbp3ld4jLkFEe6g5QnYPdDBzTWhQcckOaejjnt6AJlGvZUgRnigjWXkpcSE84Zc6Lwcy6AWKvokCiuqR_zPRRacq702Q2MQ0zL9xVrd1prbC_OX5OjPo4Ib57zlHz79PHr1Q3bfrn-fHW5Za1yemF9V2-vbw23UnuvrDcAfSOkip1WIoJXvTNRKt1Bq6H-gmvBSuNbpaGxtpen5OzQO5f8YwVcwjRgC-MYE-QVQyOV5Mp5aSv6_h_0Lq-lPnxPaeOaxjlTqeZAtSUjFujDXIYplocgeNgbCgdDoRoKT4aCqkPvnqvX2wm6PyO_lVRAHgCsW2kH5e_Z_6n9BXS9nXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2356822886</pqid></control><display><type>article</type><title>A computational genome-wide analysis of long terminal repeats retrotransposon expression in sunflower roots (Helianthus annuus L.)</title><source>SpringerLink_现刊</source><creator>Mascagni, Flavia ; Vangelisti, Alberto ; Usai, Gabriele ; Giordani, Tommaso ; Cavallini, Andrea ; Natali, Lucia</creator><creatorcontrib>Mascagni, Flavia ; Vangelisti, Alberto ; Usai, Gabriele ; Giordani, Tommaso ; Cavallini, Andrea ; Natali, Lucia</creatorcontrib><description>Long terminal repeats (LTR) retrotransposons have a major role in determining genome size, structure and function, thanks to their ability to transpose. We performed a meta-analysis of LTR-retrotransposon expression in roots of sunflower plantlets treated with different plant hormones, chemicals and NaCl. By using Illumina cDNA libraries, available from public repositories, we measured the number of reads matching the retrotranscriptase domains isolated from a whole genome library of retrotransposons. LTR-retrotransposons resulted in general barely expressed, except for 4 elements, all belonging to the AleII lineage, which showed high transcription levels in roots of both control and treated plants. The expression of retrotransposons in treated plants was slightly higher than in the control. Transcribed elements belonged to specific chromosomal loci and were not abundant in the genome. A few elements resulted differentially expressed depending on the treatment. Results suggest that, although most retrotransposons are not expressed, the transcription of such elements is related to their abundance, to their position in the chromosome and to their lineage.</description><identifier>ISSN: 0016-6707</identifier><identifier>EISSN: 1573-6857</identifier><identifier>DOI: 10.1007/s10709-020-00085-4</identifier><identifier>PMID: 31960179</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animal Genetics and Genomics ; Biomedical and Life Sciences ; Chromosomes ; Computer applications ; Evolutionary Biology ; Gene expression ; Genomes ; Helianthus annuus ; Hormones ; Human Genetics ; Life Sciences ; Microbial Genetics and Genomics ; Organic chemistry ; Original Paper ; Plant Genetics and Genomics ; Plant hormones ; Plantlets ; Roots ; Sodium chloride ; Structure-function relationships ; Sunflowers ; Transcription</subject><ispartof>Genetica, 2020-02, Vol.148 (1), p.13-23</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Genetica is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-fd0975b60735994796eef2134ad541ae94f86a345dec5e5738ce7369c45e277f3</citedby><cites>FETCH-LOGICAL-c485t-fd0975b60735994796eef2134ad541ae94f86a345dec5e5738ce7369c45e277f3</cites><orcidid>0000-0003-4977-2696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10709-020-00085-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10709-020-00085-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31960179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mascagni, Flavia</creatorcontrib><creatorcontrib>Vangelisti, Alberto</creatorcontrib><creatorcontrib>Usai, Gabriele</creatorcontrib><creatorcontrib>Giordani, Tommaso</creatorcontrib><creatorcontrib>Cavallini, Andrea</creatorcontrib><creatorcontrib>Natali, Lucia</creatorcontrib><title>A computational genome-wide analysis of long terminal repeats retrotransposon expression in sunflower roots (Helianthus annuus L.)</title><title>Genetica</title><addtitle>Genetica</addtitle><addtitle>Genetica</addtitle><description>Long terminal repeats (LTR) retrotransposons have a major role in determining genome size, structure and function, thanks to their ability to transpose. We performed a meta-analysis of LTR-retrotransposon expression in roots of sunflower plantlets treated with different plant hormones, chemicals and NaCl. By using Illumina cDNA libraries, available from public repositories, we measured the number of reads matching the retrotranscriptase domains isolated from a whole genome library of retrotransposons. LTR-retrotransposons resulted in general barely expressed, except for 4 elements, all belonging to the AleII lineage, which showed high transcription levels in roots of both control and treated plants. The expression of retrotransposons in treated plants was slightly higher than in the control. Transcribed elements belonged to specific chromosomal loci and were not abundant in the genome. A few elements resulted differentially expressed depending on the treatment. Results suggest that, although most retrotransposons are not expressed, the transcription of such elements is related to their abundance, to their position in the chromosome and to their lineage.</description><subject>Animal Genetics and Genomics</subject><subject>Biomedical and Life Sciences</subject><subject>Chromosomes</subject><subject>Computer applications</subject><subject>Evolutionary Biology</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Helianthus annuus</subject><subject>Hormones</subject><subject>Human Genetics</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Organic chemistry</subject><subject>Original Paper</subject><subject>Plant Genetics and Genomics</subject><subject>Plant hormones</subject><subject>Plantlets</subject><subject>Roots</subject><subject>Sodium chloride</subject><subject>Structure-function relationships</subject><subject>Sunflowers</subject><subject>Transcription</subject><issn>0016-6707</issn><issn>1573-6857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1u1DAUhS1ERaeFF2CBLLFpFy52_L-sKmiRRmIDa8tNboZUiR18E5Vu--R4OgUkFqyOZH_3-Ocj5K3gF4Jz-wEFt9wz3nDGOXeaqRdkI7SVzDhtX5IN58IwY7k9JieIdxXy1vhX5FgKb7iwfkMeL2mbp3ld4jLkFEe6g5QnYPdDBzTWhQcckOaejjnt6AJlGvZUgRnigjWXkpcSE84Zc6Lwcy6AWKvokCiuqR_zPRRacq702Q2MQ0zL9xVrd1prbC_OX5OjPo4Ib57zlHz79PHr1Q3bfrn-fHW5Za1yemF9V2-vbw23UnuvrDcAfSOkip1WIoJXvTNRKt1Bq6H-gmvBSuNbpaGxtpen5OzQO5f8YwVcwjRgC-MYE-QVQyOV5Mp5aSv6_h_0Lq-lPnxPaeOaxjlTqeZAtSUjFujDXIYplocgeNgbCgdDoRoKT4aCqkPvnqvX2wm6PyO_lVRAHgCsW2kH5e_Z_6n9BXS9nXQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Mascagni, Flavia</creator><creator>Vangelisti, Alberto</creator><creator>Usai, Gabriele</creator><creator>Giordani, Tommaso</creator><creator>Cavallini, Andrea</creator><creator>Natali, Lucia</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4977-2696</orcidid></search><sort><creationdate>20200201</creationdate><title>A computational genome-wide analysis of long terminal repeats retrotransposon expression in sunflower roots (Helianthus annuus L.)</title><author>Mascagni, Flavia ; Vangelisti, Alberto ; Usai, Gabriele ; Giordani, Tommaso ; Cavallini, Andrea ; Natali, Lucia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-fd0975b60735994796eef2134ad541ae94f86a345dec5e5738ce7369c45e277f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal Genetics and Genomics</topic><topic>Biomedical and Life Sciences</topic><topic>Chromosomes</topic><topic>Computer applications</topic><topic>Evolutionary Biology</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Helianthus annuus</topic><topic>Hormones</topic><topic>Human Genetics</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Organic chemistry</topic><topic>Original Paper</topic><topic>Plant Genetics and Genomics</topic><topic>Plant hormones</topic><topic>Plantlets</topic><topic>Roots</topic><topic>Sodium chloride</topic><topic>Structure-function relationships</topic><topic>Sunflowers</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mascagni, Flavia</creatorcontrib><creatorcontrib>Vangelisti, Alberto</creatorcontrib><creatorcontrib>Usai, Gabriele</creatorcontrib><creatorcontrib>Giordani, Tommaso</creatorcontrib><creatorcontrib>Cavallini, Andrea</creatorcontrib><creatorcontrib>Natali, Lucia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genetica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mascagni, Flavia</au><au>Vangelisti, Alberto</au><au>Usai, Gabriele</au><au>Giordani, Tommaso</au><au>Cavallini, Andrea</au><au>Natali, Lucia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational genome-wide analysis of long terminal repeats retrotransposon expression in sunflower roots (Helianthus annuus L.)</atitle><jtitle>Genetica</jtitle><stitle>Genetica</stitle><addtitle>Genetica</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>148</volume><issue>1</issue><spage>13</spage><epage>23</epage><pages>13-23</pages><issn>0016-6707</issn><eissn>1573-6857</eissn><abstract>Long terminal repeats (LTR) retrotransposons have a major role in determining genome size, structure and function, thanks to their ability to transpose. We performed a meta-analysis of LTR-retrotransposon expression in roots of sunflower plantlets treated with different plant hormones, chemicals and NaCl. By using Illumina cDNA libraries, available from public repositories, we measured the number of reads matching the retrotranscriptase domains isolated from a whole genome library of retrotransposons. LTR-retrotransposons resulted in general barely expressed, except for 4 elements, all belonging to the AleII lineage, which showed high transcription levels in roots of both control and treated plants. The expression of retrotransposons in treated plants was slightly higher than in the control. Transcribed elements belonged to specific chromosomal loci and were not abundant in the genome. A few elements resulted differentially expressed depending on the treatment. Results suggest that, although most retrotransposons are not expressed, the transcription of such elements is related to their abundance, to their position in the chromosome and to their lineage.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31960179</pmid><doi>10.1007/s10709-020-00085-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4977-2696</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-6707
ispartof Genetica, 2020-02, Vol.148 (1), p.13-23
issn 0016-6707
1573-6857
language eng
recordid cdi_proquest_miscellaneous_2343048937
source SpringerLink_现刊
subjects Animal Genetics and Genomics
Biomedical and Life Sciences
Chromosomes
Computer applications
Evolutionary Biology
Gene expression
Genomes
Helianthus annuus
Hormones
Human Genetics
Life Sciences
Microbial Genetics and Genomics
Organic chemistry
Original Paper
Plant Genetics and Genomics
Plant hormones
Plantlets
Roots
Sodium chloride
Structure-function relationships
Sunflowers
Transcription
title A computational genome-wide analysis of long terminal repeats retrotransposon expression in sunflower roots (Helianthus annuus L.)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T15%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20genome-wide%20analysis%20of%20long%20terminal%20repeats%20retrotransposon%20expression%20in%20sunflower%20roots%20(Helianthus%20annuus%20L.)&rft.jtitle=Genetica&rft.au=Mascagni,%20Flavia&rft.date=2020-02-01&rft.volume=148&rft.issue=1&rft.spage=13&rft.epage=23&rft.pages=13-23&rft.issn=0016-6707&rft.eissn=1573-6857&rft_id=info:doi/10.1007/s10709-020-00085-4&rft_dat=%3Cproquest_cross%3E2356822886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2356822886&rft_id=info:pmid/31960179&rfr_iscdi=true