A Step-by-Step Protocol for Optogenetic Kindling

Electrical kindling, repeated brain stimulation eventually resulting in seizures, is widely used as an animal model of epileptogenesis and epilepsy. However, the stimulation electrode used for electric kindling targets unknown neuronal populations and may introduce tissue damage and inflammation. Op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neural circuits 2020-01, Vol.14, p.3-3, Article 3
Hauptverfasser: Cela, Elvis, Sjostrom, P. Jesper
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3
container_issue
container_start_page 3
container_title Frontiers in neural circuits
container_volume 14
creator Cela, Elvis
Sjostrom, P. Jesper
description Electrical kindling, repeated brain stimulation eventually resulting in seizures, is widely used as an animal model of epileptogenesis and epilepsy. However, the stimulation electrode used for electric kindling targets unknown neuronal populations and may introduce tissue damage and inflammation. Optogenetics can be used to circumvent these shortcomings by permitting millisecond control of activity in genetically defined neurons without gross injury or inflammation. Here we describe an easy step-by-step protocol for optogenetic kindling - optokindling - by which seizures are eventually elicited in initially healthy mice through repeated light stimulation of neurons expressing Channelrhodopsin-2 (ChR2). Chronic EEG recordings may be performed over large time scales to monitor activity while video camera monitoring may be used to assess the behavioral severity of seizures. In conclusion, with optokindling, neuroscientists can elucidate the circuit changes that underpin epilepsy while minimizing the contribution of confounding factors such as brain damage and inflammation.
doi_str_mv 10.3389/fncir.2020.00003
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000514396400001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_abb4a5711ba34926b61c86dd46a46344</doaj_id><sourcerecordid>2369887570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-9b6bc9db90f7ec726a9285f68945c7a37929ba45095ae43a5436e44cc92402da3</originalsourceid><addsrcrecordid>eNqNkc9rFDEUx4MotlbvnmTAi1BmzY-XzOQilMVqsVBBPYckk1mzzCZrkqn0vze7W5fWk7m8kHy-37y8L0KvCV4w1sv3Y7A-LSimeIHrYk_QKRGCtpwQ_PTB_gS9yHmNsaCCw3N0wighgnf4FOGL5ltx29bctbvafE2xRBunZoypudmWuHLBFW-bLz4Mkw-rl-jZqKfsXt3XM_Tj8uP35ef2-ubT1fLiurUgcWmlEcbKwUg8ds52VGhJez6KXgK3nWadpNJo4Fhy7YBpDkw4AGslBUwHzc7Q1cF3iHqttslvdLpTUXu1P4hppXSqjU1OaWNA844QoxlIKowgthfDAEKDYADV68PBazubjRusCyXp6ZHp45vgf6pVvFUdppwzWg3e3Ruk-Gt2uaiNz9ZNkw4uzllRJmTfd3WiFX37D7qOcwp1VJWCngDjmFQKHyibYs7JjcdmCFa7aNU-WrWLVu2jrZI3Dz9xFPzNsgL9AfjtTByz9S5Yd8SqB6-PSwE7O7L0RRcfwzLOoVTp-f9L2R_9SL5d</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348143501</pqid></control><display><type>article</type><title>A Step-by-Step Protocol for Optogenetic Kindling</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Cela, Elvis ; Sjostrom, P. Jesper</creator><creatorcontrib>Cela, Elvis ; Sjostrom, P. Jesper</creatorcontrib><description>Electrical kindling, repeated brain stimulation eventually resulting in seizures, is widely used as an animal model of epileptogenesis and epilepsy. However, the stimulation electrode used for electric kindling targets unknown neuronal populations and may introduce tissue damage and inflammation. Optogenetics can be used to circumvent these shortcomings by permitting millisecond control of activity in genetically defined neurons without gross injury or inflammation. Here we describe an easy step-by-step protocol for optogenetic kindling - optokindling - by which seizures are eventually elicited in initially healthy mice through repeated light stimulation of neurons expressing Channelrhodopsin-2 (ChR2). Chronic EEG recordings may be performed over large time scales to monitor activity while video camera monitoring may be used to assess the behavioral severity of seizures. In conclusion, with optokindling, neuroscientists can elucidate the circuit changes that underpin epilepsy while minimizing the contribution of confounding factors such as brain damage and inflammation.</description><identifier>ISSN: 1662-5110</identifier><identifier>EISSN: 1662-5110</identifier><identifier>DOI: 10.3389/fncir.2020.00003</identifier><identifier>PMID: 32116570</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>animal model ; Animal models ; Animals ; Brain injury ; Convulsions &amp; seizures ; EEG ; Epilepsy ; Genetics ; Information processing ; Kindling ; Life Sciences &amp; Biomedicine ; Neuroscience ; Neurosciences ; Neurosciences &amp; Neurology ; Optics ; optogenetics ; protocol ; Respiration ; Science &amp; Technology ; seizure ; Seizures ; Surgery</subject><ispartof>Frontiers in neural circuits, 2020-01, Vol.14, p.3-3, Article 3</ispartof><rights>Copyright © 2020 Cela and Sjöström.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2020 Cela and Sjöström. 2020 Cela and Sjöström</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000514396400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c490t-9b6bc9db90f7ec726a9285f68945c7a37929ba45095ae43a5436e44cc92402da3</citedby><cites>FETCH-LOGICAL-c490t-9b6bc9db90f7ec726a9285f68945c7a37929ba45095ae43a5436e44cc92402da3</cites><orcidid>0000-0003-3339-9698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025532/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025532/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32116570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cela, Elvis</creatorcontrib><creatorcontrib>Sjostrom, P. Jesper</creatorcontrib><title>A Step-by-Step Protocol for Optogenetic Kindling</title><title>Frontiers in neural circuits</title><addtitle>FRONT NEURAL CIRCUIT</addtitle><addtitle>Front Neural Circuits</addtitle><description>Electrical kindling, repeated brain stimulation eventually resulting in seizures, is widely used as an animal model of epileptogenesis and epilepsy. However, the stimulation electrode used for electric kindling targets unknown neuronal populations and may introduce tissue damage and inflammation. Optogenetics can be used to circumvent these shortcomings by permitting millisecond control of activity in genetically defined neurons without gross injury or inflammation. Here we describe an easy step-by-step protocol for optogenetic kindling - optokindling - by which seizures are eventually elicited in initially healthy mice through repeated light stimulation of neurons expressing Channelrhodopsin-2 (ChR2). Chronic EEG recordings may be performed over large time scales to monitor activity while video camera monitoring may be used to assess the behavioral severity of seizures. In conclusion, with optokindling, neuroscientists can elucidate the circuit changes that underpin epilepsy while minimizing the contribution of confounding factors such as brain damage and inflammation.</description><subject>animal model</subject><subject>Animal models</subject><subject>Animals</subject><subject>Brain injury</subject><subject>Convulsions &amp; seizures</subject><subject>EEG</subject><subject>Epilepsy</subject><subject>Genetics</subject><subject>Information processing</subject><subject>Kindling</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Neurosciences &amp; Neurology</subject><subject>Optics</subject><subject>optogenetics</subject><subject>protocol</subject><subject>Respiration</subject><subject>Science &amp; Technology</subject><subject>seizure</subject><subject>Seizures</subject><subject>Surgery</subject><issn>1662-5110</issn><issn>1662-5110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkc9rFDEUx4MotlbvnmTAi1BmzY-XzOQilMVqsVBBPYckk1mzzCZrkqn0vze7W5fWk7m8kHy-37y8L0KvCV4w1sv3Y7A-LSimeIHrYk_QKRGCtpwQ_PTB_gS9yHmNsaCCw3N0wighgnf4FOGL5ltx29bctbvafE2xRBunZoypudmWuHLBFW-bLz4Mkw-rl-jZqKfsXt3XM_Tj8uP35ef2-ubT1fLiurUgcWmlEcbKwUg8ds52VGhJez6KXgK3nWadpNJo4Fhy7YBpDkw4AGslBUwHzc7Q1cF3iHqttslvdLpTUXu1P4hppXSqjU1OaWNA844QoxlIKowgthfDAEKDYADV68PBazubjRusCyXp6ZHp45vgf6pVvFUdppwzWg3e3Ruk-Gt2uaiNz9ZNkw4uzllRJmTfd3WiFX37D7qOcwp1VJWCngDjmFQKHyibYs7JjcdmCFa7aNU-WrWLVu2jrZI3Dz9xFPzNsgL9AfjtTByz9S5Yd8SqB6-PSwE7O7L0RRcfwzLOoVTp-f9L2R_9SL5d</recordid><startdate>20200129</startdate><enddate>20200129</enddate><creator>Cela, Elvis</creator><creator>Sjostrom, P. Jesper</creator><general>Frontiers Media Sa</general><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3339-9698</orcidid></search><sort><creationdate>20200129</creationdate><title>A Step-by-Step Protocol for Optogenetic Kindling</title><author>Cela, Elvis ; Sjostrom, P. Jesper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-9b6bc9db90f7ec726a9285f68945c7a37929ba45095ae43a5436e44cc92402da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>animal model</topic><topic>Animal models</topic><topic>Animals</topic><topic>Brain injury</topic><topic>Convulsions &amp; seizures</topic><topic>EEG</topic><topic>Epilepsy</topic><topic>Genetics</topic><topic>Information processing</topic><topic>Kindling</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Neurosciences &amp; Neurology</topic><topic>Optics</topic><topic>optogenetics</topic><topic>protocol</topic><topic>Respiration</topic><topic>Science &amp; Technology</topic><topic>seizure</topic><topic>Seizures</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cela, Elvis</creatorcontrib><creatorcontrib>Sjostrom, P. Jesper</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neural circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cela, Elvis</au><au>Sjostrom, P. Jesper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Step-by-Step Protocol for Optogenetic Kindling</atitle><jtitle>Frontiers in neural circuits</jtitle><stitle>FRONT NEURAL CIRCUIT</stitle><addtitle>Front Neural Circuits</addtitle><date>2020-01-29</date><risdate>2020</risdate><volume>14</volume><spage>3</spage><epage>3</epage><pages>3-3</pages><artnum>3</artnum><issn>1662-5110</issn><eissn>1662-5110</eissn><abstract>Electrical kindling, repeated brain stimulation eventually resulting in seizures, is widely used as an animal model of epileptogenesis and epilepsy. However, the stimulation electrode used for electric kindling targets unknown neuronal populations and may introduce tissue damage and inflammation. Optogenetics can be used to circumvent these shortcomings by permitting millisecond control of activity in genetically defined neurons without gross injury or inflammation. Here we describe an easy step-by-step protocol for optogenetic kindling - optokindling - by which seizures are eventually elicited in initially healthy mice through repeated light stimulation of neurons expressing Channelrhodopsin-2 (ChR2). Chronic EEG recordings may be performed over large time scales to monitor activity while video camera monitoring may be used to assess the behavioral severity of seizures. In conclusion, with optokindling, neuroscientists can elucidate the circuit changes that underpin epilepsy while minimizing the contribution of confounding factors such as brain damage and inflammation.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>32116570</pmid><doi>10.3389/fncir.2020.00003</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3339-9698</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-5110
ispartof Frontiers in neural circuits, 2020-01, Vol.14, p.3-3, Article 3
issn 1662-5110
1662-5110
language eng
recordid cdi_webofscience_primary_000514396400001CitationCount
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection
subjects animal model
Animal models
Animals
Brain injury
Convulsions & seizures
EEG
Epilepsy
Genetics
Information processing
Kindling
Life Sciences & Biomedicine
Neuroscience
Neurosciences
Neurosciences & Neurology
Optics
optogenetics
protocol
Respiration
Science & Technology
seizure
Seizures
Surgery
title A Step-by-Step Protocol for Optogenetic Kindling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Step-by-Step%20Protocol%20for%20Optogenetic%20Kindling&rft.jtitle=Frontiers%20in%20neural%20circuits&rft.au=Cela,%20Elvis&rft.date=2020-01-29&rft.volume=14&rft.spage=3&rft.epage=3&rft.pages=3-3&rft.artnum=3&rft.issn=1662-5110&rft.eissn=1662-5110&rft_id=info:doi/10.3389/fncir.2020.00003&rft_dat=%3Cproquest_webof%3E2369887570%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348143501&rft_id=info:pmid/32116570&rft_doaj_id=oai_doaj_org_article_abb4a5711ba34926b61c86dd46a46344&rfr_iscdi=true