A Step-by-Step Protocol for Optogenetic Kindling
Electrical kindling, repeated brain stimulation eventually resulting in seizures, is widely used as an animal model of epileptogenesis and epilepsy. However, the stimulation electrode used for electric kindling targets unknown neuronal populations and may introduce tissue damage and inflammation. Op...
Gespeichert in:
Veröffentlicht in: | Frontiers in neural circuits 2020-01, Vol.14, p.3-3, Article 3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3 |
---|---|
container_issue | |
container_start_page | 3 |
container_title | Frontiers in neural circuits |
container_volume | 14 |
creator | Cela, Elvis Sjostrom, P. Jesper |
description | Electrical kindling, repeated brain stimulation eventually resulting in seizures, is widely used as an animal model of epileptogenesis and epilepsy. However, the stimulation electrode used for electric kindling targets unknown neuronal populations and may introduce tissue damage and inflammation. Optogenetics can be used to circumvent these shortcomings by permitting millisecond control of activity in genetically defined neurons without gross injury or inflammation. Here we describe an easy step-by-step protocol for optogenetic kindling - optokindling - by which seizures are eventually elicited in initially healthy mice through repeated light stimulation of neurons expressing Channelrhodopsin-2 (ChR2). Chronic EEG recordings may be performed over large time scales to monitor activity while video camera monitoring may be used to assess the behavioral severity of seizures. In conclusion, with optokindling, neuroscientists can elucidate the circuit changes that underpin epilepsy while minimizing the contribution of confounding factors such as brain damage and inflammation. |
doi_str_mv | 10.3389/fncir.2020.00003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000514396400001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_abb4a5711ba34926b61c86dd46a46344</doaj_id><sourcerecordid>2369887570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-9b6bc9db90f7ec726a9285f68945c7a37929ba45095ae43a5436e44cc92402da3</originalsourceid><addsrcrecordid>eNqNkc9rFDEUx4MotlbvnmTAi1BmzY-XzOQilMVqsVBBPYckk1mzzCZrkqn0vze7W5fWk7m8kHy-37y8L0KvCV4w1sv3Y7A-LSimeIHrYk_QKRGCtpwQ_PTB_gS9yHmNsaCCw3N0wighgnf4FOGL5ltx29bctbvafE2xRBunZoypudmWuHLBFW-bLz4Mkw-rl-jZqKfsXt3XM_Tj8uP35ef2-ubT1fLiurUgcWmlEcbKwUg8ds52VGhJez6KXgK3nWadpNJo4Fhy7YBpDkw4AGslBUwHzc7Q1cF3iHqttslvdLpTUXu1P4hppXSqjU1OaWNA844QoxlIKowgthfDAEKDYADV68PBazubjRusCyXp6ZHp45vgf6pVvFUdppwzWg3e3Ruk-Gt2uaiNz9ZNkw4uzllRJmTfd3WiFX37D7qOcwp1VJWCngDjmFQKHyibYs7JjcdmCFa7aNU-WrWLVu2jrZI3Dz9xFPzNsgL9AfjtTByz9S5Yd8SqB6-PSwE7O7L0RRcfwzLOoVTp-f9L2R_9SL5d</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348143501</pqid></control><display><type>article</type><title>A Step-by-Step Protocol for Optogenetic Kindling</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Cela, Elvis ; Sjostrom, P. Jesper</creator><creatorcontrib>Cela, Elvis ; Sjostrom, P. Jesper</creatorcontrib><description>Electrical kindling, repeated brain stimulation eventually resulting in seizures, is widely used as an animal model of epileptogenesis and epilepsy. However, the stimulation electrode used for electric kindling targets unknown neuronal populations and may introduce tissue damage and inflammation. Optogenetics can be used to circumvent these shortcomings by permitting millisecond control of activity in genetically defined neurons without gross injury or inflammation. Here we describe an easy step-by-step protocol for optogenetic kindling - optokindling - by which seizures are eventually elicited in initially healthy mice through repeated light stimulation of neurons expressing Channelrhodopsin-2 (ChR2). Chronic EEG recordings may be performed over large time scales to monitor activity while video camera monitoring may be used to assess the behavioral severity of seizures. In conclusion, with optokindling, neuroscientists can elucidate the circuit changes that underpin epilepsy while minimizing the contribution of confounding factors such as brain damage and inflammation.</description><identifier>ISSN: 1662-5110</identifier><identifier>EISSN: 1662-5110</identifier><identifier>DOI: 10.3389/fncir.2020.00003</identifier><identifier>PMID: 32116570</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>animal model ; Animal models ; Animals ; Brain injury ; Convulsions & seizures ; EEG ; Epilepsy ; Genetics ; Information processing ; Kindling ; Life Sciences & Biomedicine ; Neuroscience ; Neurosciences ; Neurosciences & Neurology ; Optics ; optogenetics ; protocol ; Respiration ; Science & Technology ; seizure ; Seizures ; Surgery</subject><ispartof>Frontiers in neural circuits, 2020-01, Vol.14, p.3-3, Article 3</ispartof><rights>Copyright © 2020 Cela and Sjöström.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2020 Cela and Sjöström. 2020 Cela and Sjöström</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000514396400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c490t-9b6bc9db90f7ec726a9285f68945c7a37929ba45095ae43a5436e44cc92402da3</citedby><cites>FETCH-LOGICAL-c490t-9b6bc9db90f7ec726a9285f68945c7a37929ba45095ae43a5436e44cc92402da3</cites><orcidid>0000-0003-3339-9698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025532/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025532/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32116570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cela, Elvis</creatorcontrib><creatorcontrib>Sjostrom, P. Jesper</creatorcontrib><title>A Step-by-Step Protocol for Optogenetic Kindling</title><title>Frontiers in neural circuits</title><addtitle>FRONT NEURAL CIRCUIT</addtitle><addtitle>Front Neural Circuits</addtitle><description>Electrical kindling, repeated brain stimulation eventually resulting in seizures, is widely used as an animal model of epileptogenesis and epilepsy. However, the stimulation electrode used for electric kindling targets unknown neuronal populations and may introduce tissue damage and inflammation. Optogenetics can be used to circumvent these shortcomings by permitting millisecond control of activity in genetically defined neurons without gross injury or inflammation. Here we describe an easy step-by-step protocol for optogenetic kindling - optokindling - by which seizures are eventually elicited in initially healthy mice through repeated light stimulation of neurons expressing Channelrhodopsin-2 (ChR2). Chronic EEG recordings may be performed over large time scales to monitor activity while video camera monitoring may be used to assess the behavioral severity of seizures. In conclusion, with optokindling, neuroscientists can elucidate the circuit changes that underpin epilepsy while minimizing the contribution of confounding factors such as brain damage and inflammation.</description><subject>animal model</subject><subject>Animal models</subject><subject>Animals</subject><subject>Brain injury</subject><subject>Convulsions & seizures</subject><subject>EEG</subject><subject>Epilepsy</subject><subject>Genetics</subject><subject>Information processing</subject><subject>Kindling</subject><subject>Life Sciences & Biomedicine</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Neurosciences & Neurology</subject><subject>Optics</subject><subject>optogenetics</subject><subject>protocol</subject><subject>Respiration</subject><subject>Science & Technology</subject><subject>seizure</subject><subject>Seizures</subject><subject>Surgery</subject><issn>1662-5110</issn><issn>1662-5110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkc9rFDEUx4MotlbvnmTAi1BmzY-XzOQilMVqsVBBPYckk1mzzCZrkqn0vze7W5fWk7m8kHy-37y8L0KvCV4w1sv3Y7A-LSimeIHrYk_QKRGCtpwQ_PTB_gS9yHmNsaCCw3N0wighgnf4FOGL5ltx29bctbvafE2xRBunZoypudmWuHLBFW-bLz4Mkw-rl-jZqKfsXt3XM_Tj8uP35ef2-ubT1fLiurUgcWmlEcbKwUg8ds52VGhJez6KXgK3nWadpNJo4Fhy7YBpDkw4AGslBUwHzc7Q1cF3iHqttslvdLpTUXu1P4hppXSqjU1OaWNA844QoxlIKowgthfDAEKDYADV68PBazubjRusCyXp6ZHp45vgf6pVvFUdppwzWg3e3Ruk-Gt2uaiNz9ZNkw4uzllRJmTfd3WiFX37D7qOcwp1VJWCngDjmFQKHyibYs7JjcdmCFa7aNU-WrWLVu2jrZI3Dz9xFPzNsgL9AfjtTByz9S5Yd8SqB6-PSwE7O7L0RRcfwzLOoVTp-f9L2R_9SL5d</recordid><startdate>20200129</startdate><enddate>20200129</enddate><creator>Cela, Elvis</creator><creator>Sjostrom, P. Jesper</creator><general>Frontiers Media Sa</general><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3339-9698</orcidid></search><sort><creationdate>20200129</creationdate><title>A Step-by-Step Protocol for Optogenetic Kindling</title><author>Cela, Elvis ; Sjostrom, P. Jesper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-9b6bc9db90f7ec726a9285f68945c7a37929ba45095ae43a5436e44cc92402da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>animal model</topic><topic>Animal models</topic><topic>Animals</topic><topic>Brain injury</topic><topic>Convulsions & seizures</topic><topic>EEG</topic><topic>Epilepsy</topic><topic>Genetics</topic><topic>Information processing</topic><topic>Kindling</topic><topic>Life Sciences & Biomedicine</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Neurosciences & Neurology</topic><topic>Optics</topic><topic>optogenetics</topic><topic>protocol</topic><topic>Respiration</topic><topic>Science & Technology</topic><topic>seizure</topic><topic>Seizures</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cela, Elvis</creatorcontrib><creatorcontrib>Sjostrom, P. Jesper</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neural circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cela, Elvis</au><au>Sjostrom, P. Jesper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Step-by-Step Protocol for Optogenetic Kindling</atitle><jtitle>Frontiers in neural circuits</jtitle><stitle>FRONT NEURAL CIRCUIT</stitle><addtitle>Front Neural Circuits</addtitle><date>2020-01-29</date><risdate>2020</risdate><volume>14</volume><spage>3</spage><epage>3</epage><pages>3-3</pages><artnum>3</artnum><issn>1662-5110</issn><eissn>1662-5110</eissn><abstract>Electrical kindling, repeated brain stimulation eventually resulting in seizures, is widely used as an animal model of epileptogenesis and epilepsy. However, the stimulation electrode used for electric kindling targets unknown neuronal populations and may introduce tissue damage and inflammation. Optogenetics can be used to circumvent these shortcomings by permitting millisecond control of activity in genetically defined neurons without gross injury or inflammation. Here we describe an easy step-by-step protocol for optogenetic kindling - optokindling - by which seizures are eventually elicited in initially healthy mice through repeated light stimulation of neurons expressing Channelrhodopsin-2 (ChR2). Chronic EEG recordings may be performed over large time scales to monitor activity while video camera monitoring may be used to assess the behavioral severity of seizures. In conclusion, with optokindling, neuroscientists can elucidate the circuit changes that underpin epilepsy while minimizing the contribution of confounding factors such as brain damage and inflammation.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>32116570</pmid><doi>10.3389/fncir.2020.00003</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3339-9698</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5110 |
ispartof | Frontiers in neural circuits, 2020-01, Vol.14, p.3-3, Article 3 |
issn | 1662-5110 1662-5110 |
language | eng |
recordid | cdi_webofscience_primary_000514396400001CitationCount |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection |
subjects | animal model Animal models Animals Brain injury Convulsions & seizures EEG Epilepsy Genetics Information processing Kindling Life Sciences & Biomedicine Neuroscience Neurosciences Neurosciences & Neurology Optics optogenetics protocol Respiration Science & Technology seizure Seizures Surgery |
title | A Step-by-Step Protocol for Optogenetic Kindling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Step-by-Step%20Protocol%20for%20Optogenetic%20Kindling&rft.jtitle=Frontiers%20in%20neural%20circuits&rft.au=Cela,%20Elvis&rft.date=2020-01-29&rft.volume=14&rft.spage=3&rft.epage=3&rft.pages=3-3&rft.artnum=3&rft.issn=1662-5110&rft.eissn=1662-5110&rft_id=info:doi/10.3389/fncir.2020.00003&rft_dat=%3Cproquest_webof%3E2369887570%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348143501&rft_id=info:pmid/32116570&rft_doaj_id=oai_doaj_org_article_abb4a5711ba34926b61c86dd46a46344&rfr_iscdi=true |