Accounting for random observation time in risk prediction with longitudinal markers: An imputation approach

Longitudinally measured biomarkers are useful to predict the risk of clinical endpoints, since subject-specific marker trajectory contains additional information on pathology and critical windows. The work is motivated by the Scandinavian Fetal Growth Study, aiming at predicting pregnancy outcomes w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2020-02, Vol.29 (2), p.396-412
Hauptverfasser: Han, Yongli, Liu, Danping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 412
container_issue 2
container_start_page 396
container_title Statistical methods in medical research
container_volume 29
creator Han, Yongli
Liu, Danping
description Longitudinally measured biomarkers are useful to predict the risk of clinical endpoints, since subject-specific marker trajectory contains additional information on pathology and critical windows. The work is motivated by the Scandinavian Fetal Growth Study, aiming at predicting pregnancy outcomes with repeated ultrasound measurements during pregnancy. While the observation time of markers often varies across individuals, it is not well understood how the variations affect risk prediction. Existing methods of longitudinal risk prediction, such as shared random effects model and pattern mixture model, construct a prediction implicitly as a function of the biomarkers and their observation time. Methods that ignore the longitudinal structure, such as sufficient dimension reduction and logistic regression, have better interpretability regarding how a biomarker measured at specific time window contributes to the disease risk, but often have reduced accuracy because of ignoring the observation time information. We propose a novel imputation approach to handle the random observation time, while preserving the direct interpretation. Through extensive simulation studies and analyses of the Scandinavian Fetal Growth Study data, we systematically compared the discrimination and calibration performance of different risk prediction methods, and found that the imputation method has comparable performance to longitudinal methods with an advantage of better interpretability.
doi_str_mv 10.1177/0962280219833089
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000513264200005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280219833089</sage_id><sourcerecordid>2354651121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-73a4e606479be54cea5a81d8061d48d3bf899553e7306756b9e9f6074b37ed123</originalsourceid><addsrcrecordid>eNqNkc2L1TAUxYMozpvRvSsJuBGkmjTf7h4PHYUBN7ouaXr7JvPapCatg_-9qR1HGBBcJeT-zr059yD0gpK3lCr1jhhZ15rU1GjGiDaP0I5ypSrCGH-Mdmu5Wutn6DznG0KIItw8RWeFFdwwtUOnvXNxCbMPR9zHhJMNXRxxbDOkH3b2MeDZj4B9wMnnE54SdN79fr_18zUeYjj6eel8sAMebTpByu_xPmA_Tsu8NbDTlKJ118_Qk94OGZ7fnRfo28cPXw-fqqsvl58P-6vKMSnmSjHLQRLJlWlBcAdWWE07TSTtuO5Y22tjhGCgGJFKyNaA6SVRvGUKOlqzC_R661vGfl8gz83os4NhsAHikpuyLkIpF9oU9NUD9CYuqXgpFBNcCkprWiiyUS7FnBP0zZR8MfuzoaRZg2geBlEkL-8aL-0I3b3gz-YLoDfgFtrYZ-chOLjHSlSCslrymqzXg99WeVijKtI3_y8tdLXR2R7hr71__vwXekOwig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354651121</pqid></control><display><type>article</type><title>Accounting for random observation time in risk prediction with longitudinal markers: An imputation approach</title><source>Access via SAGE</source><source>MEDLINE</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Han, Yongli ; Liu, Danping</creator><creatorcontrib>Han, Yongli ; Liu, Danping</creatorcontrib><description>Longitudinally measured biomarkers are useful to predict the risk of clinical endpoints, since subject-specific marker trajectory contains additional information on pathology and critical windows. The work is motivated by the Scandinavian Fetal Growth Study, aiming at predicting pregnancy outcomes with repeated ultrasound measurements during pregnancy. While the observation time of markers often varies across individuals, it is not well understood how the variations affect risk prediction. Existing methods of longitudinal risk prediction, such as shared random effects model and pattern mixture model, construct a prediction implicitly as a function of the biomarkers and their observation time. Methods that ignore the longitudinal structure, such as sufficient dimension reduction and logistic regression, have better interpretability regarding how a biomarker measured at specific time window contributes to the disease risk, but often have reduced accuracy because of ignoring the observation time information. We propose a novel imputation approach to handle the random observation time, while preserving the direct interpretation. Through extensive simulation studies and analyses of the Scandinavian Fetal Growth Study data, we systematically compared the discrimination and calibration performance of different risk prediction methods, and found that the imputation method has comparable performance to longitudinal methods with an advantage of better interpretability.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280219833089</identifier><identifier>PMID: 30854937</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Biological markers ; Biomarkers ; Computer simulation ; Discrimination ; Female ; Fetal Development ; Fetal growth ; Forecasting - methods ; Health Care Sciences &amp; Services ; Humans ; Life Sciences &amp; Biomedicine ; Longitudinal Studies ; Mathematical &amp; Computational Biology ; Mathematics ; Medical Informatics ; Observation ; Pathology ; Physical Sciences ; Pregnancy ; Pregnancy Outcome ; Random effects ; Regression analysis ; Risk ; Risk Assessment ; Science &amp; Technology ; Simulation ; Statistics &amp; Probability ; Ultrasonic imaging ; Ultrasonography ; Windows ; Windows (intervals)</subject><ispartof>Statistical methods in medical research, 2020-02, Vol.29 (2), p.396-412</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000513264200005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c365t-73a4e606479be54cea5a81d8061d48d3bf899553e7306756b9e9f6074b37ed123</citedby><cites>FETCH-LOGICAL-c365t-73a4e606479be54cea5a81d8061d48d3bf899553e7306756b9e9f6074b37ed123</cites><orcidid>0000-0002-2129-7507 ; 0000-0001-5483-6303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0962280219833089$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0962280219833089$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21824,27929,27930,28253,31004,43626,43627</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30854937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Yongli</creatorcontrib><creatorcontrib>Liu, Danping</creatorcontrib><title>Accounting for random observation time in risk prediction with longitudinal markers: An imputation approach</title><title>Statistical methods in medical research</title><addtitle>STAT METHODS MED RES</addtitle><addtitle>Stat Methods Med Res</addtitle><description>Longitudinally measured biomarkers are useful to predict the risk of clinical endpoints, since subject-specific marker trajectory contains additional information on pathology and critical windows. The work is motivated by the Scandinavian Fetal Growth Study, aiming at predicting pregnancy outcomes with repeated ultrasound measurements during pregnancy. While the observation time of markers often varies across individuals, it is not well understood how the variations affect risk prediction. Existing methods of longitudinal risk prediction, such as shared random effects model and pattern mixture model, construct a prediction implicitly as a function of the biomarkers and their observation time. Methods that ignore the longitudinal structure, such as sufficient dimension reduction and logistic regression, have better interpretability regarding how a biomarker measured at specific time window contributes to the disease risk, but often have reduced accuracy because of ignoring the observation time information. We propose a novel imputation approach to handle the random observation time, while preserving the direct interpretation. Through extensive simulation studies and analyses of the Scandinavian Fetal Growth Study data, we systematically compared the discrimination and calibration performance of different risk prediction methods, and found that the imputation method has comparable performance to longitudinal methods with an advantage of better interpretability.</description><subject>Algorithms</subject><subject>Biological markers</subject><subject>Biomarkers</subject><subject>Computer simulation</subject><subject>Discrimination</subject><subject>Female</subject><subject>Fetal Development</subject><subject>Fetal growth</subject><subject>Forecasting - methods</subject><subject>Health Care Sciences &amp; Services</subject><subject>Humans</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Longitudinal Studies</subject><subject>Mathematical &amp; Computational Biology</subject><subject>Mathematics</subject><subject>Medical Informatics</subject><subject>Observation</subject><subject>Pathology</subject><subject>Physical Sciences</subject><subject>Pregnancy</subject><subject>Pregnancy Outcome</subject><subject>Random effects</subject><subject>Regression analysis</subject><subject>Risk</subject><subject>Risk Assessment</subject><subject>Science &amp; Technology</subject><subject>Simulation</subject><subject>Statistics &amp; Probability</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>Windows</subject><subject>Windows (intervals)</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNqNkc2L1TAUxYMozpvRvSsJuBGkmjTf7h4PHYUBN7ouaXr7JvPapCatg_-9qR1HGBBcJeT-zr059yD0gpK3lCr1jhhZ15rU1GjGiDaP0I5ypSrCGH-Mdmu5Wutn6DznG0KIItw8RWeFFdwwtUOnvXNxCbMPR9zHhJMNXRxxbDOkH3b2MeDZj4B9wMnnE54SdN79fr_18zUeYjj6eel8sAMebTpByu_xPmA_Tsu8NbDTlKJ118_Qk94OGZ7fnRfo28cPXw-fqqsvl58P-6vKMSnmSjHLQRLJlWlBcAdWWE07TSTtuO5Y22tjhGCgGJFKyNaA6SVRvGUKOlqzC_R661vGfl8gz83os4NhsAHikpuyLkIpF9oU9NUD9CYuqXgpFBNcCkprWiiyUS7FnBP0zZR8MfuzoaRZg2geBlEkL-8aL-0I3b3gz-YLoDfgFtrYZ-chOLjHSlSCslrymqzXg99WeVijKtI3_y8tdLXR2R7hr71__vwXekOwig</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Han, Yongli</creator><creator>Liu, Danping</creator><general>SAGE Publications</general><general>Sage</general><general>Sage Publications Ltd</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2129-7507</orcidid><orcidid>https://orcid.org/0000-0001-5483-6303</orcidid></search><sort><creationdate>202002</creationdate><title>Accounting for random observation time in risk prediction with longitudinal markers: An imputation approach</title><author>Han, Yongli ; Liu, Danping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-73a4e606479be54cea5a81d8061d48d3bf899553e7306756b9e9f6074b37ed123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biological markers</topic><topic>Biomarkers</topic><topic>Computer simulation</topic><topic>Discrimination</topic><topic>Female</topic><topic>Fetal Development</topic><topic>Fetal growth</topic><topic>Forecasting - methods</topic><topic>Health Care Sciences &amp; Services</topic><topic>Humans</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Longitudinal Studies</topic><topic>Mathematical &amp; Computational Biology</topic><topic>Mathematics</topic><topic>Medical Informatics</topic><topic>Observation</topic><topic>Pathology</topic><topic>Physical Sciences</topic><topic>Pregnancy</topic><topic>Pregnancy Outcome</topic><topic>Random effects</topic><topic>Regression analysis</topic><topic>Risk</topic><topic>Risk Assessment</topic><topic>Science &amp; Technology</topic><topic>Simulation</topic><topic>Statistics &amp; Probability</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>Windows</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yongli</creatorcontrib><creatorcontrib>Liu, Danping</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yongli</au><au>Liu, Danping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accounting for random observation time in risk prediction with longitudinal markers: An imputation approach</atitle><jtitle>Statistical methods in medical research</jtitle><stitle>STAT METHODS MED RES</stitle><addtitle>Stat Methods Med Res</addtitle><date>2020-02</date><risdate>2020</risdate><volume>29</volume><issue>2</issue><spage>396</spage><epage>412</epage><pages>396-412</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>Longitudinally measured biomarkers are useful to predict the risk of clinical endpoints, since subject-specific marker trajectory contains additional information on pathology and critical windows. The work is motivated by the Scandinavian Fetal Growth Study, aiming at predicting pregnancy outcomes with repeated ultrasound measurements during pregnancy. While the observation time of markers often varies across individuals, it is not well understood how the variations affect risk prediction. Existing methods of longitudinal risk prediction, such as shared random effects model and pattern mixture model, construct a prediction implicitly as a function of the biomarkers and their observation time. Methods that ignore the longitudinal structure, such as sufficient dimension reduction and logistic regression, have better interpretability regarding how a biomarker measured at specific time window contributes to the disease risk, but often have reduced accuracy because of ignoring the observation time information. We propose a novel imputation approach to handle the random observation time, while preserving the direct interpretation. Through extensive simulation studies and analyses of the Scandinavian Fetal Growth Study data, we systematically compared the discrimination and calibration performance of different risk prediction methods, and found that the imputation method has comparable performance to longitudinal methods with an advantage of better interpretability.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>30854937</pmid><doi>10.1177/0962280219833089</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2129-7507</orcidid><orcidid>https://orcid.org/0000-0001-5483-6303</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2020-02, Vol.29 (2), p.396-412
issn 0962-2802
1477-0334
language eng
recordid cdi_webofscience_primary_000513264200005
source Access via SAGE; MEDLINE; Applied Social Sciences Index & Abstracts (ASSIA); Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Algorithms
Biological markers
Biomarkers
Computer simulation
Discrimination
Female
Fetal Development
Fetal growth
Forecasting - methods
Health Care Sciences & Services
Humans
Life Sciences & Biomedicine
Longitudinal Studies
Mathematical & Computational Biology
Mathematics
Medical Informatics
Observation
Pathology
Physical Sciences
Pregnancy
Pregnancy Outcome
Random effects
Regression analysis
Risk
Risk Assessment
Science & Technology
Simulation
Statistics & Probability
Ultrasonic imaging
Ultrasonography
Windows
Windows (intervals)
title Accounting for random observation time in risk prediction with longitudinal markers: An imputation approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accounting%20for%20random%20observation%20time%20in%20risk%20prediction%20with%20longitudinal%20markers:%20An%20imputation%20approach&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Han,%20Yongli&rft.date=2020-02&rft.volume=29&rft.issue=2&rft.spage=396&rft.epage=412&rft.pages=396-412&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280219833089&rft_dat=%3Cproquest_webof%3E2354651121%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354651121&rft_id=info:pmid/30854937&rft_sage_id=10.1177_0962280219833089&rfr_iscdi=true