Accounting for random observation time in risk prediction with longitudinal markers: An imputation approach
Longitudinally measured biomarkers are useful to predict the risk of clinical endpoints, since subject-specific marker trajectory contains additional information on pathology and critical windows. The work is motivated by the Scandinavian Fetal Growth Study, aiming at predicting pregnancy outcomes w...
Gespeichert in:
Veröffentlicht in: | Statistical methods in medical research 2020-02, Vol.29 (2), p.396-412 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 412 |
---|---|
container_issue | 2 |
container_start_page | 396 |
container_title | Statistical methods in medical research |
container_volume | 29 |
creator | Han, Yongli Liu, Danping |
description | Longitudinally measured biomarkers are useful to predict the risk of clinical endpoints, since subject-specific marker trajectory contains additional information on pathology and critical windows. The work is motivated by the Scandinavian Fetal Growth Study, aiming at predicting pregnancy outcomes with repeated ultrasound measurements during pregnancy. While the observation time of markers often varies across individuals, it is not well understood how the variations affect risk prediction. Existing methods of longitudinal risk prediction, such as shared random effects model and pattern mixture model, construct a prediction implicitly as a function of the biomarkers and their observation time. Methods that ignore the longitudinal structure, such as sufficient dimension reduction and logistic regression, have better interpretability regarding how a biomarker measured at specific time window contributes to the disease risk, but often have reduced accuracy because of ignoring the observation time information. We propose a novel imputation approach to handle the random observation time, while preserving the direct interpretation. Through extensive simulation studies and analyses of the Scandinavian Fetal Growth Study data, we systematically compared the discrimination and calibration performance of different risk prediction methods, and found that the imputation method has comparable performance to longitudinal methods with an advantage of better interpretability. |
doi_str_mv | 10.1177/0962280219833089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000513264200005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280219833089</sage_id><sourcerecordid>2354651121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-73a4e606479be54cea5a81d8061d48d3bf899553e7306756b9e9f6074b37ed123</originalsourceid><addsrcrecordid>eNqNkc2L1TAUxYMozpvRvSsJuBGkmjTf7h4PHYUBN7ouaXr7JvPapCatg_-9qR1HGBBcJeT-zr059yD0gpK3lCr1jhhZ15rU1GjGiDaP0I5ypSrCGH-Mdmu5Wutn6DznG0KIItw8RWeFFdwwtUOnvXNxCbMPR9zHhJMNXRxxbDOkH3b2MeDZj4B9wMnnE54SdN79fr_18zUeYjj6eel8sAMebTpByu_xPmA_Tsu8NbDTlKJ118_Qk94OGZ7fnRfo28cPXw-fqqsvl58P-6vKMSnmSjHLQRLJlWlBcAdWWE07TSTtuO5Y22tjhGCgGJFKyNaA6SVRvGUKOlqzC_R661vGfl8gz83os4NhsAHikpuyLkIpF9oU9NUD9CYuqXgpFBNcCkprWiiyUS7FnBP0zZR8MfuzoaRZg2geBlEkL-8aL-0I3b3gz-YLoDfgFtrYZ-chOLjHSlSCslrymqzXg99WeVijKtI3_y8tdLXR2R7hr71__vwXekOwig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354651121</pqid></control><display><type>article</type><title>Accounting for random observation time in risk prediction with longitudinal markers: An imputation approach</title><source>Access via SAGE</source><source>MEDLINE</source><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Han, Yongli ; Liu, Danping</creator><creatorcontrib>Han, Yongli ; Liu, Danping</creatorcontrib><description>Longitudinally measured biomarkers are useful to predict the risk of clinical endpoints, since subject-specific marker trajectory contains additional information on pathology and critical windows. The work is motivated by the Scandinavian Fetal Growth Study, aiming at predicting pregnancy outcomes with repeated ultrasound measurements during pregnancy. While the observation time of markers often varies across individuals, it is not well understood how the variations affect risk prediction. Existing methods of longitudinal risk prediction, such as shared random effects model and pattern mixture model, construct a prediction implicitly as a function of the biomarkers and their observation time. Methods that ignore the longitudinal structure, such as sufficient dimension reduction and logistic regression, have better interpretability regarding how a biomarker measured at specific time window contributes to the disease risk, but often have reduced accuracy because of ignoring the observation time information. We propose a novel imputation approach to handle the random observation time, while preserving the direct interpretation. Through extensive simulation studies and analyses of the Scandinavian Fetal Growth Study data, we systematically compared the discrimination and calibration performance of different risk prediction methods, and found that the imputation method has comparable performance to longitudinal methods with an advantage of better interpretability.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280219833089</identifier><identifier>PMID: 30854937</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Biological markers ; Biomarkers ; Computer simulation ; Discrimination ; Female ; Fetal Development ; Fetal growth ; Forecasting - methods ; Health Care Sciences & Services ; Humans ; Life Sciences & Biomedicine ; Longitudinal Studies ; Mathematical & Computational Biology ; Mathematics ; Medical Informatics ; Observation ; Pathology ; Physical Sciences ; Pregnancy ; Pregnancy Outcome ; Random effects ; Regression analysis ; Risk ; Risk Assessment ; Science & Technology ; Simulation ; Statistics & Probability ; Ultrasonic imaging ; Ultrasonography ; Windows ; Windows (intervals)</subject><ispartof>Statistical methods in medical research, 2020-02, Vol.29 (2), p.396-412</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000513264200005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c365t-73a4e606479be54cea5a81d8061d48d3bf899553e7306756b9e9f6074b37ed123</citedby><cites>FETCH-LOGICAL-c365t-73a4e606479be54cea5a81d8061d48d3bf899553e7306756b9e9f6074b37ed123</cites><orcidid>0000-0002-2129-7507 ; 0000-0001-5483-6303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0962280219833089$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0962280219833089$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21824,27929,27930,28253,31004,43626,43627</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30854937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Yongli</creatorcontrib><creatorcontrib>Liu, Danping</creatorcontrib><title>Accounting for random observation time in risk prediction with longitudinal markers: An imputation approach</title><title>Statistical methods in medical research</title><addtitle>STAT METHODS MED RES</addtitle><addtitle>Stat Methods Med Res</addtitle><description>Longitudinally measured biomarkers are useful to predict the risk of clinical endpoints, since subject-specific marker trajectory contains additional information on pathology and critical windows. The work is motivated by the Scandinavian Fetal Growth Study, aiming at predicting pregnancy outcomes with repeated ultrasound measurements during pregnancy. While the observation time of markers often varies across individuals, it is not well understood how the variations affect risk prediction. Existing methods of longitudinal risk prediction, such as shared random effects model and pattern mixture model, construct a prediction implicitly as a function of the biomarkers and their observation time. Methods that ignore the longitudinal structure, such as sufficient dimension reduction and logistic regression, have better interpretability regarding how a biomarker measured at specific time window contributes to the disease risk, but often have reduced accuracy because of ignoring the observation time information. We propose a novel imputation approach to handle the random observation time, while preserving the direct interpretation. Through extensive simulation studies and analyses of the Scandinavian Fetal Growth Study data, we systematically compared the discrimination and calibration performance of different risk prediction methods, and found that the imputation method has comparable performance to longitudinal methods with an advantage of better interpretability.</description><subject>Algorithms</subject><subject>Biological markers</subject><subject>Biomarkers</subject><subject>Computer simulation</subject><subject>Discrimination</subject><subject>Female</subject><subject>Fetal Development</subject><subject>Fetal growth</subject><subject>Forecasting - methods</subject><subject>Health Care Sciences & Services</subject><subject>Humans</subject><subject>Life Sciences & Biomedicine</subject><subject>Longitudinal Studies</subject><subject>Mathematical & Computational Biology</subject><subject>Mathematics</subject><subject>Medical Informatics</subject><subject>Observation</subject><subject>Pathology</subject><subject>Physical Sciences</subject><subject>Pregnancy</subject><subject>Pregnancy Outcome</subject><subject>Random effects</subject><subject>Regression analysis</subject><subject>Risk</subject><subject>Risk Assessment</subject><subject>Science & Technology</subject><subject>Simulation</subject><subject>Statistics & Probability</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>Windows</subject><subject>Windows (intervals)</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNqNkc2L1TAUxYMozpvRvSsJuBGkmjTf7h4PHYUBN7ouaXr7JvPapCatg_-9qR1HGBBcJeT-zr059yD0gpK3lCr1jhhZ15rU1GjGiDaP0I5ypSrCGH-Mdmu5Wutn6DznG0KIItw8RWeFFdwwtUOnvXNxCbMPR9zHhJMNXRxxbDOkH3b2MeDZj4B9wMnnE54SdN79fr_18zUeYjj6eel8sAMebTpByu_xPmA_Tsu8NbDTlKJ118_Qk94OGZ7fnRfo28cPXw-fqqsvl58P-6vKMSnmSjHLQRLJlWlBcAdWWE07TSTtuO5Y22tjhGCgGJFKyNaA6SVRvGUKOlqzC_R661vGfl8gz83os4NhsAHikpuyLkIpF9oU9NUD9CYuqXgpFBNcCkprWiiyUS7FnBP0zZR8MfuzoaRZg2geBlEkL-8aL-0I3b3gz-YLoDfgFtrYZ-chOLjHSlSCslrymqzXg99WeVijKtI3_y8tdLXR2R7hr71__vwXekOwig</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Han, Yongli</creator><creator>Liu, Danping</creator><general>SAGE Publications</general><general>Sage</general><general>Sage Publications Ltd</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2129-7507</orcidid><orcidid>https://orcid.org/0000-0001-5483-6303</orcidid></search><sort><creationdate>202002</creationdate><title>Accounting for random observation time in risk prediction with longitudinal markers: An imputation approach</title><author>Han, Yongli ; Liu, Danping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-73a4e606479be54cea5a81d8061d48d3bf899553e7306756b9e9f6074b37ed123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biological markers</topic><topic>Biomarkers</topic><topic>Computer simulation</topic><topic>Discrimination</topic><topic>Female</topic><topic>Fetal Development</topic><topic>Fetal growth</topic><topic>Forecasting - methods</topic><topic>Health Care Sciences & Services</topic><topic>Humans</topic><topic>Life Sciences & Biomedicine</topic><topic>Longitudinal Studies</topic><topic>Mathematical & Computational Biology</topic><topic>Mathematics</topic><topic>Medical Informatics</topic><topic>Observation</topic><topic>Pathology</topic><topic>Physical Sciences</topic><topic>Pregnancy</topic><topic>Pregnancy Outcome</topic><topic>Random effects</topic><topic>Regression analysis</topic><topic>Risk</topic><topic>Risk Assessment</topic><topic>Science & Technology</topic><topic>Simulation</topic><topic>Statistics & Probability</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>Windows</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yongli</creatorcontrib><creatorcontrib>Liu, Danping</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yongli</au><au>Liu, Danping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accounting for random observation time in risk prediction with longitudinal markers: An imputation approach</atitle><jtitle>Statistical methods in medical research</jtitle><stitle>STAT METHODS MED RES</stitle><addtitle>Stat Methods Med Res</addtitle><date>2020-02</date><risdate>2020</risdate><volume>29</volume><issue>2</issue><spage>396</spage><epage>412</epage><pages>396-412</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>Longitudinally measured biomarkers are useful to predict the risk of clinical endpoints, since subject-specific marker trajectory contains additional information on pathology and critical windows. The work is motivated by the Scandinavian Fetal Growth Study, aiming at predicting pregnancy outcomes with repeated ultrasound measurements during pregnancy. While the observation time of markers often varies across individuals, it is not well understood how the variations affect risk prediction. Existing methods of longitudinal risk prediction, such as shared random effects model and pattern mixture model, construct a prediction implicitly as a function of the biomarkers and their observation time. Methods that ignore the longitudinal structure, such as sufficient dimension reduction and logistic regression, have better interpretability regarding how a biomarker measured at specific time window contributes to the disease risk, but often have reduced accuracy because of ignoring the observation time information. We propose a novel imputation approach to handle the random observation time, while preserving the direct interpretation. Through extensive simulation studies and analyses of the Scandinavian Fetal Growth Study data, we systematically compared the discrimination and calibration performance of different risk prediction methods, and found that the imputation method has comparable performance to longitudinal methods with an advantage of better interpretability.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>30854937</pmid><doi>10.1177/0962280219833089</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2129-7507</orcidid><orcidid>https://orcid.org/0000-0001-5483-6303</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-2802 |
ispartof | Statistical methods in medical research, 2020-02, Vol.29 (2), p.396-412 |
issn | 0962-2802 1477-0334 |
language | eng |
recordid | cdi_webofscience_primary_000513264200005 |
source | Access via SAGE; MEDLINE; Applied Social Sciences Index & Abstracts (ASSIA); Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Algorithms Biological markers Biomarkers Computer simulation Discrimination Female Fetal Development Fetal growth Forecasting - methods Health Care Sciences & Services Humans Life Sciences & Biomedicine Longitudinal Studies Mathematical & Computational Biology Mathematics Medical Informatics Observation Pathology Physical Sciences Pregnancy Pregnancy Outcome Random effects Regression analysis Risk Risk Assessment Science & Technology Simulation Statistics & Probability Ultrasonic imaging Ultrasonography Windows Windows (intervals) |
title | Accounting for random observation time in risk prediction with longitudinal markers: An imputation approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accounting%20for%20random%20observation%20time%20in%20risk%20prediction%20with%20longitudinal%20markers:%20An%20imputation%20approach&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Han,%20Yongli&rft.date=2020-02&rft.volume=29&rft.issue=2&rft.spage=396&rft.epage=412&rft.pages=396-412&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280219833089&rft_dat=%3Cproquest_webof%3E2354651121%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354651121&rft_id=info:pmid/30854937&rft_sage_id=10.1177_0962280219833089&rfr_iscdi=true |