Biomechanical properties of anuran long bones: correlations with locomotor modes and habitat use
Long bones are subjected to mechanical loads during locomotion that will influence their biomechanical properties through a feedback mechanism (the bone mechanostat). This mechanism adapts the spatial distribution of the mineralized tissue to resist compression, bending and torsion. Among vertebrate...
Gespeichert in:
Veröffentlicht in: | Journal of anatomy 2020-06, Vol.236 (6), p.1112-1125 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1125 |
---|---|
container_issue | 6 |
container_start_page | 1112 |
container_title | Journal of anatomy |
container_volume | 236 |
creator | Vera, Miriam Corina Ferretti, José Luis Abdala, Virginia Cointry, Gustavo Roberto |
description | Long bones are subjected to mechanical loads during locomotion that will influence their biomechanical properties through a feedback mechanism (the bone mechanostat). This mechanism adapts the spatial distribution of the mineralized tissue to resist compression, bending and torsion. Among vertebrates, anurans represent an excellent group to study long bone properties because they vary widely in locomotor modes and habitat use, which enforce different skeletal loadings. In this study, we hypothesized that (a) the cortical bone mass, density and design of anuran femur and tibiofibula would reflect the mechanical influences of the different locomotor modes and habitat use, and (b) the relationships between the architectural efficiency of cortical design (cross‐sectional moments of inertia) and the intrinsic stiffness of cortical tissue [cortical mineral density; the 'distribution/quality' (d/q) relationship] would describe some inter‐specific differences in the efficiency of the bone mechanostat to improve bone design under different mechanical loads. To test this hypothesis, we determined tomographic (peripheral quantitative computed tomography) indicators of bone mass, mineralization, and design along the femur and tibiofibula of four anuran species with different modes of locomotion and use of habitat. We found inter‐specific differences in all measures between the distal and proximal ends and mid‐diaphysis of the bones. In general, terrestrial‐hopper species had the highest values. Arboreal‐walker species had the lowest values for all variables except for cortical bone mineral density, which was lowest in aquatic‐swimmer species. The d/q relationships showed similar responses of bone modeling as a function of cortical stiffness for aquatic and arboreal species, whereas terrestrial‐hoppers had higher values for moments of inertia regardless of the tissue compliance to be deformed. These results provide new evidence regarding the significant role of movement and habitat use in addition to the biomechanical properties of long bones within a morpho‐functional and comparative context in anuran species.
The anuran species analyzed showed different biomechanical properties in their long bones, especially the terrestrial‐hopper species. The patterns observed in selected bone measures can be explained by the different mechanical exigencies of the modes of locomotion and habitat use of the species, and thus provide evidence of the efficiency of the bone mechanostat |
doi_str_mv | 10.1111/joa.13161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000512904800001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401882863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4431-4f71deb629b203caafb503e7d88e7285976a9c89b61923fd9421b185f88864523</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7jh68A9IwIsis5uv7k48COvgJwt70XNMp6t3MnSnZpNul_33Zp1xUEEwlwrU81be1EvIU85OeTlnW3SnXPKa3yMLrmqzairN7pMFY4KvdKPFCXmU85YxLplRD8mJFKwSSpkF-fY24Ah-42LwbqC7hDtIU4BMsacuzslFOmC8oi1GyK-px5RgcFPAmOlNmDal63HECRMdsSs6Fzu6cW2Y3ETnDI_Jg94NGZ4c6pJ8ff_uy_rj6uLyw6f1-cXKKyX5SvUN76CthWkFk965vq2YhKbTGhqhK9PUznht2pobIfvOKMFbrqtea12rSsglebOfu5vbEToPcUpusLsURpduLbpg_-zEsLFX-N02gpu6vLkkLw4DEl7PkCc7huxhGFwEnLMVslKN4lWtC_r8L3SLc4rle1YoxrUWupaFermnfMKcE_RHM5zZu9yKytmfuRX22e_uj-SvoAqg98ANtNhnHyB6OGKMsYoLw5QuN8bXd8svCa1xjlORvvp_aaHPDnQY4Pbflu3ny_O99x_gacMT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401882863</pqid></control><display><type>article</type><title>Biomechanical properties of anuran long bones: correlations with locomotor modes and habitat use</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Web of Science - Social Sciences Citation Index – 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Vera, Miriam Corina ; Ferretti, José Luis ; Abdala, Virginia ; Cointry, Gustavo Roberto</creator><creatorcontrib>Vera, Miriam Corina ; Ferretti, José Luis ; Abdala, Virginia ; Cointry, Gustavo Roberto</creatorcontrib><description>Long bones are subjected to mechanical loads during locomotion that will influence their biomechanical properties through a feedback mechanism (the bone mechanostat). This mechanism adapts the spatial distribution of the mineralized tissue to resist compression, bending and torsion. Among vertebrates, anurans represent an excellent group to study long bone properties because they vary widely in locomotor modes and habitat use, which enforce different skeletal loadings. In this study, we hypothesized that (a) the cortical bone mass, density and design of anuran femur and tibiofibula would reflect the mechanical influences of the different locomotor modes and habitat use, and (b) the relationships between the architectural efficiency of cortical design (cross‐sectional moments of inertia) and the intrinsic stiffness of cortical tissue [cortical mineral density; the 'distribution/quality' (d/q) relationship] would describe some inter‐specific differences in the efficiency of the bone mechanostat to improve bone design under different mechanical loads. To test this hypothesis, we determined tomographic (peripheral quantitative computed tomography) indicators of bone mass, mineralization, and design along the femur and tibiofibula of four anuran species with different modes of locomotion and use of habitat. We found inter‐specific differences in all measures between the distal and proximal ends and mid‐diaphysis of the bones. In general, terrestrial‐hopper species had the highest values. Arboreal‐walker species had the lowest values for all variables except for cortical bone mineral density, which was lowest in aquatic‐swimmer species. The d/q relationships showed similar responses of bone modeling as a function of cortical stiffness for aquatic and arboreal species, whereas terrestrial‐hoppers had higher values for moments of inertia regardless of the tissue compliance to be deformed. These results provide new evidence regarding the significant role of movement and habitat use in addition to the biomechanical properties of long bones within a morpho‐functional and comparative context in anuran species.
The anuran species analyzed showed different biomechanical properties in their long bones, especially the terrestrial‐hopper species. The patterns observed in selected bone measures can be explained by the different mechanical exigencies of the modes of locomotion and habitat use of the species, and thus provide evidence of the efficiency of the bone mechanostat in each species.</description><identifier>ISSN: 0021-8782</identifier><identifier>EISSN: 1469-7580</identifier><identifier>DOI: 10.1111/joa.13161</identifier><identifier>PMID: 32052449</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Anatomy & Morphology ; Animals ; Anura - physiology ; anuran locomotion ; Biomechanical Phenomena - physiology ; Biomechanics ; bone biomechanics ; Bone Density - physiology ; Bone mass ; bone mechanostat ; Bone mineral density ; Bones ; Compression ; Computed tomography ; Cortical bone ; Diaphysis ; Ecosystem ; Femur ; Femur - diagnostic imaging ; Femur - physiology ; Fibula - diagnostic imaging ; Fibula - physiology ; Habitat utilization ; Life Sciences & Biomedicine ; Locomotion ; Locomotion - physiology ; Long bone ; Male ; Mechanical properties ; Mineralization ; Original ; pQCT ; Science & Technology ; Spatial distribution ; Species ; Tibia - diagnostic imaging ; Tibia - physiology ; tibia‐fibula ; Tomography, X-Ray Computed</subject><ispartof>Journal of anatomy, 2020-06, Vol.236 (6), p.1112-1125</ispartof><rights>2020 Anatomical Society</rights><rights>2020 Anatomical Society.</rights><rights>Journal of Anatomy © 2020 Anatomical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000512904800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4431-4f71deb629b203caafb503e7d88e7285976a9c89b61923fd9421b185f88864523</citedby><cites>FETCH-LOGICAL-c4431-4f71deb629b203caafb503e7d88e7285976a9c89b61923fd9421b185f88864523</cites><orcidid>0000-0002-4615-5011 ; 0000-0003-0988-1345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219620/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219620/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,1419,1435,27931,27932,28255,28256,45581,45582,46416,46840,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32052449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vera, Miriam Corina</creatorcontrib><creatorcontrib>Ferretti, José Luis</creatorcontrib><creatorcontrib>Abdala, Virginia</creatorcontrib><creatorcontrib>Cointry, Gustavo Roberto</creatorcontrib><title>Biomechanical properties of anuran long bones: correlations with locomotor modes and habitat use</title><title>Journal of anatomy</title><addtitle>J ANAT</addtitle><addtitle>J Anat</addtitle><description>Long bones are subjected to mechanical loads during locomotion that will influence their biomechanical properties through a feedback mechanism (the bone mechanostat). This mechanism adapts the spatial distribution of the mineralized tissue to resist compression, bending and torsion. Among vertebrates, anurans represent an excellent group to study long bone properties because they vary widely in locomotor modes and habitat use, which enforce different skeletal loadings. In this study, we hypothesized that (a) the cortical bone mass, density and design of anuran femur and tibiofibula would reflect the mechanical influences of the different locomotor modes and habitat use, and (b) the relationships between the architectural efficiency of cortical design (cross‐sectional moments of inertia) and the intrinsic stiffness of cortical tissue [cortical mineral density; the 'distribution/quality' (d/q) relationship] would describe some inter‐specific differences in the efficiency of the bone mechanostat to improve bone design under different mechanical loads. To test this hypothesis, we determined tomographic (peripheral quantitative computed tomography) indicators of bone mass, mineralization, and design along the femur and tibiofibula of four anuran species with different modes of locomotion and use of habitat. We found inter‐specific differences in all measures between the distal and proximal ends and mid‐diaphysis of the bones. In general, terrestrial‐hopper species had the highest values. Arboreal‐walker species had the lowest values for all variables except for cortical bone mineral density, which was lowest in aquatic‐swimmer species. The d/q relationships showed similar responses of bone modeling as a function of cortical stiffness for aquatic and arboreal species, whereas terrestrial‐hoppers had higher values for moments of inertia regardless of the tissue compliance to be deformed. These results provide new evidence regarding the significant role of movement and habitat use in addition to the biomechanical properties of long bones within a morpho‐functional and comparative context in anuran species.
The anuran species analyzed showed different biomechanical properties in their long bones, especially the terrestrial‐hopper species. The patterns observed in selected bone measures can be explained by the different mechanical exigencies of the modes of locomotion and habitat use of the species, and thus provide evidence of the efficiency of the bone mechanostat in each species.</description><subject>Anatomy & Morphology</subject><subject>Animals</subject><subject>Anura - physiology</subject><subject>anuran locomotion</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Biomechanics</subject><subject>bone biomechanics</subject><subject>Bone Density - physiology</subject><subject>Bone mass</subject><subject>bone mechanostat</subject><subject>Bone mineral density</subject><subject>Bones</subject><subject>Compression</subject><subject>Computed tomography</subject><subject>Cortical bone</subject><subject>Diaphysis</subject><subject>Ecosystem</subject><subject>Femur</subject><subject>Femur - diagnostic imaging</subject><subject>Femur - physiology</subject><subject>Fibula - diagnostic imaging</subject><subject>Fibula - physiology</subject><subject>Habitat utilization</subject><subject>Life Sciences & Biomedicine</subject><subject>Locomotion</subject><subject>Locomotion - physiology</subject><subject>Long bone</subject><subject>Male</subject><subject>Mechanical properties</subject><subject>Mineralization</subject><subject>Original</subject><subject>pQCT</subject><subject>Science & Technology</subject><subject>Spatial distribution</subject><subject>Species</subject><subject>Tibia - diagnostic imaging</subject><subject>Tibia - physiology</subject><subject>tibia‐fibula</subject><subject>Tomography, X-Ray Computed</subject><issn>0021-8782</issn><issn>1469-7580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ARHDP</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQhoMo7jh68A9IwIsis5uv7k48COvgJwt70XNMp6t3MnSnZpNul_33Zp1xUEEwlwrU81be1EvIU85OeTlnW3SnXPKa3yMLrmqzairN7pMFY4KvdKPFCXmU85YxLplRD8mJFKwSSpkF-fY24Ah-42LwbqC7hDtIU4BMsacuzslFOmC8oi1GyK-px5RgcFPAmOlNmDal63HECRMdsSs6Fzu6cW2Y3ETnDI_Jg94NGZ4c6pJ8ff_uy_rj6uLyw6f1-cXKKyX5SvUN76CthWkFk965vq2YhKbTGhqhK9PUznht2pobIfvOKMFbrqtea12rSsglebOfu5vbEToPcUpusLsURpduLbpg_-zEsLFX-N02gpu6vLkkLw4DEl7PkCc7huxhGFwEnLMVslKN4lWtC_r8L3SLc4rle1YoxrUWupaFermnfMKcE_RHM5zZu9yKytmfuRX22e_uj-SvoAqg98ANtNhnHyB6OGKMsYoLw5QuN8bXd8svCa1xjlORvvp_aaHPDnQY4Pbflu3ny_O99x_gacMT</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Vera, Miriam Corina</creator><creator>Ferretti, José Luis</creator><creator>Abdala, Virginia</creator><creator>Cointry, Gustavo Roberto</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>17B</scope><scope>AOWDO</scope><scope>ARHDP</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4615-5011</orcidid><orcidid>https://orcid.org/0000-0003-0988-1345</orcidid></search><sort><creationdate>202006</creationdate><title>Biomechanical properties of anuran long bones: correlations with locomotor modes and habitat use</title><author>Vera, Miriam Corina ; Ferretti, José Luis ; Abdala, Virginia ; Cointry, Gustavo Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4431-4f71deb629b203caafb503e7d88e7285976a9c89b61923fd9421b185f88864523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anatomy & Morphology</topic><topic>Animals</topic><topic>Anura - physiology</topic><topic>anuran locomotion</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Biomechanics</topic><topic>bone biomechanics</topic><topic>Bone Density - physiology</topic><topic>Bone mass</topic><topic>bone mechanostat</topic><topic>Bone mineral density</topic><topic>Bones</topic><topic>Compression</topic><topic>Computed tomography</topic><topic>Cortical bone</topic><topic>Diaphysis</topic><topic>Ecosystem</topic><topic>Femur</topic><topic>Femur - diagnostic imaging</topic><topic>Femur - physiology</topic><topic>Fibula - diagnostic imaging</topic><topic>Fibula - physiology</topic><topic>Habitat utilization</topic><topic>Life Sciences & Biomedicine</topic><topic>Locomotion</topic><topic>Locomotion - physiology</topic><topic>Long bone</topic><topic>Male</topic><topic>Mechanical properties</topic><topic>Mineralization</topic><topic>Original</topic><topic>pQCT</topic><topic>Science & Technology</topic><topic>Spatial distribution</topic><topic>Species</topic><topic>Tibia - diagnostic imaging</topic><topic>Tibia - physiology</topic><topic>tibia‐fibula</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vera, Miriam Corina</creatorcontrib><creatorcontrib>Ferretti, José Luis</creatorcontrib><creatorcontrib>Abdala, Virginia</creatorcontrib><creatorcontrib>Cointry, Gustavo Roberto</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science - Social Sciences Citation Index – 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI & AHCI)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of anatomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vera, Miriam Corina</au><au>Ferretti, José Luis</au><au>Abdala, Virginia</au><au>Cointry, Gustavo Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical properties of anuran long bones: correlations with locomotor modes and habitat use</atitle><jtitle>Journal of anatomy</jtitle><stitle>J ANAT</stitle><addtitle>J Anat</addtitle><date>2020-06</date><risdate>2020</risdate><volume>236</volume><issue>6</issue><spage>1112</spage><epage>1125</epage><pages>1112-1125</pages><issn>0021-8782</issn><eissn>1469-7580</eissn><abstract>Long bones are subjected to mechanical loads during locomotion that will influence their biomechanical properties through a feedback mechanism (the bone mechanostat). This mechanism adapts the spatial distribution of the mineralized tissue to resist compression, bending and torsion. Among vertebrates, anurans represent an excellent group to study long bone properties because they vary widely in locomotor modes and habitat use, which enforce different skeletal loadings. In this study, we hypothesized that (a) the cortical bone mass, density and design of anuran femur and tibiofibula would reflect the mechanical influences of the different locomotor modes and habitat use, and (b) the relationships between the architectural efficiency of cortical design (cross‐sectional moments of inertia) and the intrinsic stiffness of cortical tissue [cortical mineral density; the 'distribution/quality' (d/q) relationship] would describe some inter‐specific differences in the efficiency of the bone mechanostat to improve bone design under different mechanical loads. To test this hypothesis, we determined tomographic (peripheral quantitative computed tomography) indicators of bone mass, mineralization, and design along the femur and tibiofibula of four anuran species with different modes of locomotion and use of habitat. We found inter‐specific differences in all measures between the distal and proximal ends and mid‐diaphysis of the bones. In general, terrestrial‐hopper species had the highest values. Arboreal‐walker species had the lowest values for all variables except for cortical bone mineral density, which was lowest in aquatic‐swimmer species. The d/q relationships showed similar responses of bone modeling as a function of cortical stiffness for aquatic and arboreal species, whereas terrestrial‐hoppers had higher values for moments of inertia regardless of the tissue compliance to be deformed. These results provide new evidence regarding the significant role of movement and habitat use in addition to the biomechanical properties of long bones within a morpho‐functional and comparative context in anuran species.
The anuran species analyzed showed different biomechanical properties in their long bones, especially the terrestrial‐hopper species. The patterns observed in selected bone measures can be explained by the different mechanical exigencies of the modes of locomotion and habitat use of the species, and thus provide evidence of the efficiency of the bone mechanostat in each species.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>32052449</pmid><doi>10.1111/joa.13161</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4615-5011</orcidid><orcidid>https://orcid.org/0000-0003-0988-1345</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8782 |
ispartof | Journal of anatomy, 2020-06, Vol.236 (6), p.1112-1125 |
issn | 0021-8782 1469-7580 |
language | eng |
recordid | cdi_webofscience_primary_000512904800001CitationCount |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection); PubMed Central; Web of Science - Social Sciences Citation Index – 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Anatomy & Morphology Animals Anura - physiology anuran locomotion Biomechanical Phenomena - physiology Biomechanics bone biomechanics Bone Density - physiology Bone mass bone mechanostat Bone mineral density Bones Compression Computed tomography Cortical bone Diaphysis Ecosystem Femur Femur - diagnostic imaging Femur - physiology Fibula - diagnostic imaging Fibula - physiology Habitat utilization Life Sciences & Biomedicine Locomotion Locomotion - physiology Long bone Male Mechanical properties Mineralization Original pQCT Science & Technology Spatial distribution Species Tibia - diagnostic imaging Tibia - physiology tibia‐fibula Tomography, X-Ray Computed |
title | Biomechanical properties of anuran long bones: correlations with locomotor modes and habitat use |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T03%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20properties%20of%20anuran%20long%20bones:%20correlations%20with%20locomotor%20modes%20and%20habitat%20use&rft.jtitle=Journal%20of%20anatomy&rft.au=Vera,%20Miriam%20Corina&rft.date=2020-06&rft.volume=236&rft.issue=6&rft.spage=1112&rft.epage=1125&rft.pages=1112-1125&rft.issn=0021-8782&rft.eissn=1469-7580&rft_id=info:doi/10.1111/joa.13161&rft_dat=%3Cproquest_webof%3E2401882863%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401882863&rft_id=info:pmid/32052449&rfr_iscdi=true |