Biomechanical properties of anuran long bones: correlations with locomotor modes and habitat use

Long bones are subjected to mechanical loads during locomotion that will influence their biomechanical properties through a feedback mechanism (the bone mechanostat). This mechanism adapts the spatial distribution of the mineralized tissue to resist compression, bending and torsion. Among vertebrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of anatomy 2020-06, Vol.236 (6), p.1112-1125
Hauptverfasser: Vera, Miriam Corina, Ferretti, José Luis, Abdala, Virginia, Cointry, Gustavo Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1125
container_issue 6
container_start_page 1112
container_title Journal of anatomy
container_volume 236
creator Vera, Miriam Corina
Ferretti, José Luis
Abdala, Virginia
Cointry, Gustavo Roberto
description Long bones are subjected to mechanical loads during locomotion that will influence their biomechanical properties through a feedback mechanism (the bone mechanostat). This mechanism adapts the spatial distribution of the mineralized tissue to resist compression, bending and torsion. Among vertebrates, anurans represent an excellent group to study long bone properties because they vary widely in locomotor modes and habitat use, which enforce different skeletal loadings. In this study, we hypothesized that (a) the cortical bone mass, density and design of anuran femur and tibiofibula would reflect the mechanical influences of the different locomotor modes and habitat use, and (b) the relationships between the architectural efficiency of cortical design (cross‐sectional moments of inertia) and the intrinsic stiffness of cortical tissue [cortical mineral density; the 'distribution/quality' (d/q) relationship] would describe some inter‐specific differences in the efficiency of the bone mechanostat to improve bone design under different mechanical loads. To test this hypothesis, we determined tomographic (peripheral quantitative computed tomography) indicators of bone mass, mineralization, and design along the femur and tibiofibula of four anuran species with different modes of locomotion and use of habitat. We found inter‐specific differences in all measures between the distal and proximal ends and mid‐diaphysis of the bones. In general, terrestrial‐hopper species had the highest values. Arboreal‐walker species had the lowest values for all variables except for cortical bone mineral density, which was lowest in aquatic‐swimmer species. The d/q relationships showed similar responses of bone modeling as a function of cortical stiffness for aquatic and arboreal species, whereas terrestrial‐hoppers had higher values for moments of inertia regardless of the tissue compliance to be deformed. These results provide new evidence regarding the significant role of movement and habitat use in addition to the biomechanical properties of long bones within a morpho‐functional and comparative context in anuran species. The anuran species analyzed showed different biomechanical properties in their long bones, especially the terrestrial‐hopper species. The patterns observed in selected bone measures can be explained by the different mechanical exigencies of the modes of locomotion and habitat use of the species, and thus provide evidence of the efficiency of the bone mechanostat
doi_str_mv 10.1111/joa.13161
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000512904800001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401882863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4431-4f71deb629b203caafb503e7d88e7285976a9c89b61923fd9421b185f88864523</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7jh68A9IwIsis5uv7k48COvgJwt70XNMp6t3MnSnZpNul_33Zp1xUEEwlwrU81be1EvIU85OeTlnW3SnXPKa3yMLrmqzairN7pMFY4KvdKPFCXmU85YxLplRD8mJFKwSSpkF-fY24Ah-42LwbqC7hDtIU4BMsacuzslFOmC8oi1GyK-px5RgcFPAmOlNmDal63HECRMdsSs6Fzu6cW2Y3ETnDI_Jg94NGZ4c6pJ8ff_uy_rj6uLyw6f1-cXKKyX5SvUN76CthWkFk965vq2YhKbTGhqhK9PUznht2pobIfvOKMFbrqtea12rSsglebOfu5vbEToPcUpusLsURpduLbpg_-zEsLFX-N02gpu6vLkkLw4DEl7PkCc7huxhGFwEnLMVslKN4lWtC_r8L3SLc4rle1YoxrUWupaFermnfMKcE_RHM5zZu9yKytmfuRX22e_uj-SvoAqg98ANtNhnHyB6OGKMsYoLw5QuN8bXd8svCa1xjlORvvp_aaHPDnQY4Pbflu3ny_O99x_gacMT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401882863</pqid></control><display><type>article</type><title>Biomechanical properties of anuran long bones: correlations with locomotor modes and habitat use</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Web of Science - Social Sciences Citation Index – 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Vera, Miriam Corina ; Ferretti, José Luis ; Abdala, Virginia ; Cointry, Gustavo Roberto</creator><creatorcontrib>Vera, Miriam Corina ; Ferretti, José Luis ; Abdala, Virginia ; Cointry, Gustavo Roberto</creatorcontrib><description>Long bones are subjected to mechanical loads during locomotion that will influence their biomechanical properties through a feedback mechanism (the bone mechanostat). This mechanism adapts the spatial distribution of the mineralized tissue to resist compression, bending and torsion. Among vertebrates, anurans represent an excellent group to study long bone properties because they vary widely in locomotor modes and habitat use, which enforce different skeletal loadings. In this study, we hypothesized that (a) the cortical bone mass, density and design of anuran femur and tibiofibula would reflect the mechanical influences of the different locomotor modes and habitat use, and (b) the relationships between the architectural efficiency of cortical design (cross‐sectional moments of inertia) and the intrinsic stiffness of cortical tissue [cortical mineral density; the 'distribution/quality' (d/q) relationship] would describe some inter‐specific differences in the efficiency of the bone mechanostat to improve bone design under different mechanical loads. To test this hypothesis, we determined tomographic (peripheral quantitative computed tomography) indicators of bone mass, mineralization, and design along the femur and tibiofibula of four anuran species with different modes of locomotion and use of habitat. We found inter‐specific differences in all measures between the distal and proximal ends and mid‐diaphysis of the bones. In general, terrestrial‐hopper species had the highest values. Arboreal‐walker species had the lowest values for all variables except for cortical bone mineral density, which was lowest in aquatic‐swimmer species. The d/q relationships showed similar responses of bone modeling as a function of cortical stiffness for aquatic and arboreal species, whereas terrestrial‐hoppers had higher values for moments of inertia regardless of the tissue compliance to be deformed. These results provide new evidence regarding the significant role of movement and habitat use in addition to the biomechanical properties of long bones within a morpho‐functional and comparative context in anuran species. The anuran species analyzed showed different biomechanical properties in their long bones, especially the terrestrial‐hopper species. The patterns observed in selected bone measures can be explained by the different mechanical exigencies of the modes of locomotion and habitat use of the species, and thus provide evidence of the efficiency of the bone mechanostat in each species.</description><identifier>ISSN: 0021-8782</identifier><identifier>EISSN: 1469-7580</identifier><identifier>DOI: 10.1111/joa.13161</identifier><identifier>PMID: 32052449</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Anatomy &amp; Morphology ; Animals ; Anura - physiology ; anuran locomotion ; Biomechanical Phenomena - physiology ; Biomechanics ; bone biomechanics ; Bone Density - physiology ; Bone mass ; bone mechanostat ; Bone mineral density ; Bones ; Compression ; Computed tomography ; Cortical bone ; Diaphysis ; Ecosystem ; Femur ; Femur - diagnostic imaging ; Femur - physiology ; Fibula - diagnostic imaging ; Fibula - physiology ; Habitat utilization ; Life Sciences &amp; Biomedicine ; Locomotion ; Locomotion - physiology ; Long bone ; Male ; Mechanical properties ; Mineralization ; Original ; pQCT ; Science &amp; Technology ; Spatial distribution ; Species ; Tibia - diagnostic imaging ; Tibia - physiology ; tibia‐fibula ; Tomography, X-Ray Computed</subject><ispartof>Journal of anatomy, 2020-06, Vol.236 (6), p.1112-1125</ispartof><rights>2020 Anatomical Society</rights><rights>2020 Anatomical Society.</rights><rights>Journal of Anatomy © 2020 Anatomical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000512904800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4431-4f71deb629b203caafb503e7d88e7285976a9c89b61923fd9421b185f88864523</citedby><cites>FETCH-LOGICAL-c4431-4f71deb629b203caafb503e7d88e7285976a9c89b61923fd9421b185f88864523</cites><orcidid>0000-0002-4615-5011 ; 0000-0003-0988-1345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219620/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219620/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,1419,1435,27931,27932,28255,28256,45581,45582,46416,46840,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32052449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vera, Miriam Corina</creatorcontrib><creatorcontrib>Ferretti, José Luis</creatorcontrib><creatorcontrib>Abdala, Virginia</creatorcontrib><creatorcontrib>Cointry, Gustavo Roberto</creatorcontrib><title>Biomechanical properties of anuran long bones: correlations with locomotor modes and habitat use</title><title>Journal of anatomy</title><addtitle>J ANAT</addtitle><addtitle>J Anat</addtitle><description>Long bones are subjected to mechanical loads during locomotion that will influence their biomechanical properties through a feedback mechanism (the bone mechanostat). This mechanism adapts the spatial distribution of the mineralized tissue to resist compression, bending and torsion. Among vertebrates, anurans represent an excellent group to study long bone properties because they vary widely in locomotor modes and habitat use, which enforce different skeletal loadings. In this study, we hypothesized that (a) the cortical bone mass, density and design of anuran femur and tibiofibula would reflect the mechanical influences of the different locomotor modes and habitat use, and (b) the relationships between the architectural efficiency of cortical design (cross‐sectional moments of inertia) and the intrinsic stiffness of cortical tissue [cortical mineral density; the 'distribution/quality' (d/q) relationship] would describe some inter‐specific differences in the efficiency of the bone mechanostat to improve bone design under different mechanical loads. To test this hypothesis, we determined tomographic (peripheral quantitative computed tomography) indicators of bone mass, mineralization, and design along the femur and tibiofibula of four anuran species with different modes of locomotion and use of habitat. We found inter‐specific differences in all measures between the distal and proximal ends and mid‐diaphysis of the bones. In general, terrestrial‐hopper species had the highest values. Arboreal‐walker species had the lowest values for all variables except for cortical bone mineral density, which was lowest in aquatic‐swimmer species. The d/q relationships showed similar responses of bone modeling as a function of cortical stiffness for aquatic and arboreal species, whereas terrestrial‐hoppers had higher values for moments of inertia regardless of the tissue compliance to be deformed. These results provide new evidence regarding the significant role of movement and habitat use in addition to the biomechanical properties of long bones within a morpho‐functional and comparative context in anuran species. The anuran species analyzed showed different biomechanical properties in their long bones, especially the terrestrial‐hopper species. The patterns observed in selected bone measures can be explained by the different mechanical exigencies of the modes of locomotion and habitat use of the species, and thus provide evidence of the efficiency of the bone mechanostat in each species.</description><subject>Anatomy &amp; Morphology</subject><subject>Animals</subject><subject>Anura - physiology</subject><subject>anuran locomotion</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Biomechanics</subject><subject>bone biomechanics</subject><subject>Bone Density - physiology</subject><subject>Bone mass</subject><subject>bone mechanostat</subject><subject>Bone mineral density</subject><subject>Bones</subject><subject>Compression</subject><subject>Computed tomography</subject><subject>Cortical bone</subject><subject>Diaphysis</subject><subject>Ecosystem</subject><subject>Femur</subject><subject>Femur - diagnostic imaging</subject><subject>Femur - physiology</subject><subject>Fibula - diagnostic imaging</subject><subject>Fibula - physiology</subject><subject>Habitat utilization</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Locomotion</subject><subject>Locomotion - physiology</subject><subject>Long bone</subject><subject>Male</subject><subject>Mechanical properties</subject><subject>Mineralization</subject><subject>Original</subject><subject>pQCT</subject><subject>Science &amp; Technology</subject><subject>Spatial distribution</subject><subject>Species</subject><subject>Tibia - diagnostic imaging</subject><subject>Tibia - physiology</subject><subject>tibia‐fibula</subject><subject>Tomography, X-Ray Computed</subject><issn>0021-8782</issn><issn>1469-7580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ARHDP</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQhoMo7jh68A9IwIsis5uv7k48COvgJwt70XNMp6t3MnSnZpNul_33Zp1xUEEwlwrU81be1EvIU85OeTlnW3SnXPKa3yMLrmqzairN7pMFY4KvdKPFCXmU85YxLplRD8mJFKwSSpkF-fY24Ah-42LwbqC7hDtIU4BMsacuzslFOmC8oi1GyK-px5RgcFPAmOlNmDal63HECRMdsSs6Fzu6cW2Y3ETnDI_Jg94NGZ4c6pJ8ff_uy_rj6uLyw6f1-cXKKyX5SvUN76CthWkFk965vq2YhKbTGhqhK9PUznht2pobIfvOKMFbrqtea12rSsglebOfu5vbEToPcUpusLsURpduLbpg_-zEsLFX-N02gpu6vLkkLw4DEl7PkCc7huxhGFwEnLMVslKN4lWtC_r8L3SLc4rle1YoxrUWupaFermnfMKcE_RHM5zZu9yKytmfuRX22e_uj-SvoAqg98ANtNhnHyB6OGKMsYoLw5QuN8bXd8svCa1xjlORvvp_aaHPDnQY4Pbflu3ny_O99x_gacMT</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Vera, Miriam Corina</creator><creator>Ferretti, José Luis</creator><creator>Abdala, Virginia</creator><creator>Cointry, Gustavo Roberto</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>17B</scope><scope>AOWDO</scope><scope>ARHDP</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4615-5011</orcidid><orcidid>https://orcid.org/0000-0003-0988-1345</orcidid></search><sort><creationdate>202006</creationdate><title>Biomechanical properties of anuran long bones: correlations with locomotor modes and habitat use</title><author>Vera, Miriam Corina ; Ferretti, José Luis ; Abdala, Virginia ; Cointry, Gustavo Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4431-4f71deb629b203caafb503e7d88e7285976a9c89b61923fd9421b185f88864523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anatomy &amp; Morphology</topic><topic>Animals</topic><topic>Anura - physiology</topic><topic>anuran locomotion</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Biomechanics</topic><topic>bone biomechanics</topic><topic>Bone Density - physiology</topic><topic>Bone mass</topic><topic>bone mechanostat</topic><topic>Bone mineral density</topic><topic>Bones</topic><topic>Compression</topic><topic>Computed tomography</topic><topic>Cortical bone</topic><topic>Diaphysis</topic><topic>Ecosystem</topic><topic>Femur</topic><topic>Femur - diagnostic imaging</topic><topic>Femur - physiology</topic><topic>Fibula - diagnostic imaging</topic><topic>Fibula - physiology</topic><topic>Habitat utilization</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Locomotion</topic><topic>Locomotion - physiology</topic><topic>Long bone</topic><topic>Male</topic><topic>Mechanical properties</topic><topic>Mineralization</topic><topic>Original</topic><topic>pQCT</topic><topic>Science &amp; Technology</topic><topic>Spatial distribution</topic><topic>Species</topic><topic>Tibia - diagnostic imaging</topic><topic>Tibia - physiology</topic><topic>tibia‐fibula</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vera, Miriam Corina</creatorcontrib><creatorcontrib>Ferretti, José Luis</creatorcontrib><creatorcontrib>Abdala, Virginia</creatorcontrib><creatorcontrib>Cointry, Gustavo Roberto</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science - Social Sciences Citation Index – 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of anatomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vera, Miriam Corina</au><au>Ferretti, José Luis</au><au>Abdala, Virginia</au><au>Cointry, Gustavo Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical properties of anuran long bones: correlations with locomotor modes and habitat use</atitle><jtitle>Journal of anatomy</jtitle><stitle>J ANAT</stitle><addtitle>J Anat</addtitle><date>2020-06</date><risdate>2020</risdate><volume>236</volume><issue>6</issue><spage>1112</spage><epage>1125</epage><pages>1112-1125</pages><issn>0021-8782</issn><eissn>1469-7580</eissn><abstract>Long bones are subjected to mechanical loads during locomotion that will influence their biomechanical properties through a feedback mechanism (the bone mechanostat). This mechanism adapts the spatial distribution of the mineralized tissue to resist compression, bending and torsion. Among vertebrates, anurans represent an excellent group to study long bone properties because they vary widely in locomotor modes and habitat use, which enforce different skeletal loadings. In this study, we hypothesized that (a) the cortical bone mass, density and design of anuran femur and tibiofibula would reflect the mechanical influences of the different locomotor modes and habitat use, and (b) the relationships between the architectural efficiency of cortical design (cross‐sectional moments of inertia) and the intrinsic stiffness of cortical tissue [cortical mineral density; the 'distribution/quality' (d/q) relationship] would describe some inter‐specific differences in the efficiency of the bone mechanostat to improve bone design under different mechanical loads. To test this hypothesis, we determined tomographic (peripheral quantitative computed tomography) indicators of bone mass, mineralization, and design along the femur and tibiofibula of four anuran species with different modes of locomotion and use of habitat. We found inter‐specific differences in all measures between the distal and proximal ends and mid‐diaphysis of the bones. In general, terrestrial‐hopper species had the highest values. Arboreal‐walker species had the lowest values for all variables except for cortical bone mineral density, which was lowest in aquatic‐swimmer species. The d/q relationships showed similar responses of bone modeling as a function of cortical stiffness for aquatic and arboreal species, whereas terrestrial‐hoppers had higher values for moments of inertia regardless of the tissue compliance to be deformed. These results provide new evidence regarding the significant role of movement and habitat use in addition to the biomechanical properties of long bones within a morpho‐functional and comparative context in anuran species. The anuran species analyzed showed different biomechanical properties in their long bones, especially the terrestrial‐hopper species. The patterns observed in selected bone measures can be explained by the different mechanical exigencies of the modes of locomotion and habitat use of the species, and thus provide evidence of the efficiency of the bone mechanostat in each species.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>32052449</pmid><doi>10.1111/joa.13161</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4615-5011</orcidid><orcidid>https://orcid.org/0000-0003-0988-1345</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8782
ispartof Journal of anatomy, 2020-06, Vol.236 (6), p.1112-1125
issn 0021-8782
1469-7580
language eng
recordid cdi_webofscience_primary_000512904800001CitationCount
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection); PubMed Central; Web of Science - Social Sciences Citation Index – 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Anatomy & Morphology
Animals
Anura - physiology
anuran locomotion
Biomechanical Phenomena - physiology
Biomechanics
bone biomechanics
Bone Density - physiology
Bone mass
bone mechanostat
Bone mineral density
Bones
Compression
Computed tomography
Cortical bone
Diaphysis
Ecosystem
Femur
Femur - diagnostic imaging
Femur - physiology
Fibula - diagnostic imaging
Fibula - physiology
Habitat utilization
Life Sciences & Biomedicine
Locomotion
Locomotion - physiology
Long bone
Male
Mechanical properties
Mineralization
Original
pQCT
Science & Technology
Spatial distribution
Species
Tibia - diagnostic imaging
Tibia - physiology
tibia‐fibula
Tomography, X-Ray Computed
title Biomechanical properties of anuran long bones: correlations with locomotor modes and habitat use
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T03%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20properties%20of%20anuran%20long%20bones:%20correlations%20with%20locomotor%20modes%20and%20habitat%20use&rft.jtitle=Journal%20of%20anatomy&rft.au=Vera,%20Miriam%20Corina&rft.date=2020-06&rft.volume=236&rft.issue=6&rft.spage=1112&rft.epage=1125&rft.pages=1112-1125&rft.issn=0021-8782&rft.eissn=1469-7580&rft_id=info:doi/10.1111/joa.13161&rft_dat=%3Cproquest_webof%3E2401882863%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401882863&rft_id=info:pmid/32052449&rfr_iscdi=true