Origin of the Stability and Transition from Anionic to Cationic Surface Ligand Passivation of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals

Recently, the structural stability of all-inorganic halide perovskite nanocrystals has been significantly enhanced. To understand the enhancement, we developed surface-passivation models for cubic CsPbBr3 nanocrystals with anionic (oleate) and cationic (oleylammonium) organic ligands based on first-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-02, Vol.11 (3), p.652-658
Hauptverfasser: Yoo, Dongsuk, Woo, Ju Young, Kim, Youngsik, Kim, Sun Won, Wei, Su-Huai, Jeong, Sohee, Kim, Yong-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 658
container_issue 3
container_start_page 652
container_title The journal of physical chemistry letters
container_volume 11
creator Yoo, Dongsuk
Woo, Ju Young
Kim, Youngsik
Kim, Sun Won
Wei, Su-Huai
Jeong, Sohee
Kim, Yong-Hyun
description Recently, the structural stability of all-inorganic halide perovskite nanocrystals has been significantly enhanced. To understand the enhancement, we developed surface-passivation models for cubic CsPbBr3 nanocrystals with anionic (oleate) and cationic (oleylammonium) organic ligands based on first-principles calculations and nuclear magnetic resonance investigations. We propose that the (100) surface is initially terminated with oleate ligand complexes on PbBr2(100) surfaces. Also, the ligand transition to oleylammonium on the Pb-rich surfaces is expected due to the addition of metal halides (ZnBr2) during colloidal synthesis. The significant improvement in the structural stability of the cationic ligand-passivated CsPbBr3 nanocrystals was attributed to the suppressed exposure of the merging-vulnerable (110) surface, caused by the large difference in formation energy between the ligand-passivated (100) and Br-passivated (110) surfaces.
doi_str_mv 10.1021/acs.jpclett.9b03600
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000512223400009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334701162</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-e52054d571d45c85de62e34bc9dab2a6e1839ceb6167557ff815afeb0aed2fda3</originalsourceid><addsrcrecordid>eNqNkd1u1DAQhS0EoqXwBEjIl0goW__E-blcRdBWWtFKLdeRY4-LS2IvtlO0L9LnxbtZKq4QV3Ok-c7MaA5C7ylZUcLouVRx9bBVI6S0agfCK0JeoFPalk1R00a8_EufoDcxPhBStaSpX6MTTlvKat6eoqfrYO-tw97g9B3wbZKDHW3aYek0vgvSRZusd9gEP-G1y9IqnDzuZFr07RyMVIA39n5vuZEx2sdDcz9zPY7FlfMh9zLbQbTzhDcgNb6Uo9WAbyD4x_jDJsBfpfMq7GKSY3yLXplc4N2xnqFvXz7fdZfF5vriqltvCllSmgoQjIhSi5rqUqhGaKgY8HJQrZYDkxXQhrcKhopWtRC1MQ0V0sBAJGhmtORn6OMydxv8zxli6icbFYyjdODn2DPOy5pQWrGM8gVVwccYwPTbYCcZdj0l_T6QPgfSHwPpj4Fk14fjgnmYQD97_iSQgU8L8AsGb6Ky4BQ8Y4QQQRljvMyK7Onm_-nOpkMQnZ9dytbzxXo408_B5cf-8_bfONC9xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334701162</pqid></control><display><type>article</type><title>Origin of the Stability and Transition from Anionic to Cationic Surface Ligand Passivation of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals</title><source>ACS Publications</source><creator>Yoo, Dongsuk ; Woo, Ju Young ; Kim, Youngsik ; Kim, Sun Won ; Wei, Su-Huai ; Jeong, Sohee ; Kim, Yong-Hyun</creator><creatorcontrib>Yoo, Dongsuk ; Woo, Ju Young ; Kim, Youngsik ; Kim, Sun Won ; Wei, Su-Huai ; Jeong, Sohee ; Kim, Yong-Hyun</creatorcontrib><description>Recently, the structural stability of all-inorganic halide perovskite nanocrystals has been significantly enhanced. To understand the enhancement, we developed surface-passivation models for cubic CsPbBr3 nanocrystals with anionic (oleate) and cationic (oleylammonium) organic ligands based on first-principles calculations and nuclear magnetic resonance investigations. We propose that the (100) surface is initially terminated with oleate ligand complexes on PbBr2(100) surfaces. Also, the ligand transition to oleylammonium on the Pb-rich surfaces is expected due to the addition of metal halides (ZnBr2) during colloidal synthesis. The significant improvement in the structural stability of the cationic ligand-passivated CsPbBr3 nanocrystals was attributed to the suppressed exposure of the merging-vulnerable (110) surface, caused by the large difference in formation energy between the ligand-passivated (100) and Br-passivated (110) surfaces.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.9b03600</identifier><identifier>PMID: 31912739</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Physical ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Physics ; Physics, Atomic, Molecular &amp; Chemical ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>The journal of physical chemistry letters, 2020-02, Vol.11 (3), p.652-658</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>35</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000512223400009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a411t-e52054d571d45c85de62e34bc9dab2a6e1839ceb6167557ff815afeb0aed2fda3</citedby><cites>FETCH-LOGICAL-a411t-e52054d571d45c85de62e34bc9dab2a6e1839ceb6167557ff815afeb0aed2fda3</cites><orcidid>0000-0003-4255-2068 ; 0000-0003-2387-2066 ; 0000-0003-1563-4738 ; 0000-0002-9863-1374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.9b03600$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.9b03600$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31912739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoo, Dongsuk</creatorcontrib><creatorcontrib>Woo, Ju Young</creatorcontrib><creatorcontrib>Kim, Youngsik</creatorcontrib><creatorcontrib>Kim, Sun Won</creatorcontrib><creatorcontrib>Wei, Su-Huai</creatorcontrib><creatorcontrib>Jeong, Sohee</creatorcontrib><creatorcontrib>Kim, Yong-Hyun</creatorcontrib><title>Origin of the Stability and Transition from Anionic to Cationic Surface Ligand Passivation of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals</title><title>The journal of physical chemistry letters</title><addtitle>J PHYS CHEM LETT</addtitle><addtitle>J. Phys. Chem. Lett</addtitle><description>Recently, the structural stability of all-inorganic halide perovskite nanocrystals has been significantly enhanced. To understand the enhancement, we developed surface-passivation models for cubic CsPbBr3 nanocrystals with anionic (oleate) and cationic (oleylammonium) organic ligands based on first-principles calculations and nuclear magnetic resonance investigations. We propose that the (100) surface is initially terminated with oleate ligand complexes on PbBr2(100) surfaces. Also, the ligand transition to oleylammonium on the Pb-rich surfaces is expected due to the addition of metal halides (ZnBr2) during colloidal synthesis. The significant improvement in the structural stability of the cationic ligand-passivated CsPbBr3 nanocrystals was attributed to the suppressed exposure of the merging-vulnerable (110) surface, caused by the large difference in formation energy between the ligand-passivated (100) and Br-passivated (110) surfaces.</description><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Atomic, Molecular &amp; Chemical</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkd1u1DAQhS0EoqXwBEjIl0goW__E-blcRdBWWtFKLdeRY4-LS2IvtlO0L9LnxbtZKq4QV3Ok-c7MaA5C7ylZUcLouVRx9bBVI6S0agfCK0JeoFPalk1R00a8_EufoDcxPhBStaSpX6MTTlvKat6eoqfrYO-tw97g9B3wbZKDHW3aYek0vgvSRZusd9gEP-G1y9IqnDzuZFr07RyMVIA39n5vuZEx2sdDcz9zPY7FlfMh9zLbQbTzhDcgNb6Uo9WAbyD4x_jDJsBfpfMq7GKSY3yLXplc4N2xnqFvXz7fdZfF5vriqltvCllSmgoQjIhSi5rqUqhGaKgY8HJQrZYDkxXQhrcKhopWtRC1MQ0V0sBAJGhmtORn6OMydxv8zxli6icbFYyjdODn2DPOy5pQWrGM8gVVwccYwPTbYCcZdj0l_T6QPgfSHwPpj4Fk14fjgnmYQD97_iSQgU8L8AsGb6Ky4BQ8Y4QQQRljvMyK7Onm_-nOpkMQnZ9dytbzxXo408_B5cf-8_bfONC9xQ</recordid><startdate>20200206</startdate><enddate>20200206</enddate><creator>Yoo, Dongsuk</creator><creator>Woo, Ju Young</creator><creator>Kim, Youngsik</creator><creator>Kim, Sun Won</creator><creator>Wei, Su-Huai</creator><creator>Jeong, Sohee</creator><creator>Kim, Yong-Hyun</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4255-2068</orcidid><orcidid>https://orcid.org/0000-0003-2387-2066</orcidid><orcidid>https://orcid.org/0000-0003-1563-4738</orcidid><orcidid>https://orcid.org/0000-0002-9863-1374</orcidid></search><sort><creationdate>20200206</creationdate><title>Origin of the Stability and Transition from Anionic to Cationic Surface Ligand Passivation of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals</title><author>Yoo, Dongsuk ; Woo, Ju Young ; Kim, Youngsik ; Kim, Sun Won ; Wei, Su-Huai ; Jeong, Sohee ; Kim, Yong-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-e52054d571d45c85de62e34bc9dab2a6e1839ceb6167557ff815afeb0aed2fda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Atomic, Molecular &amp; Chemical</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Dongsuk</creatorcontrib><creatorcontrib>Woo, Ju Young</creatorcontrib><creatorcontrib>Kim, Youngsik</creatorcontrib><creatorcontrib>Kim, Sun Won</creatorcontrib><creatorcontrib>Wei, Su-Huai</creatorcontrib><creatorcontrib>Jeong, Sohee</creatorcontrib><creatorcontrib>Kim, Yong-Hyun</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Dongsuk</au><au>Woo, Ju Young</au><au>Kim, Youngsik</au><au>Kim, Sun Won</au><au>Wei, Su-Huai</au><au>Jeong, Sohee</au><au>Kim, Yong-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of the Stability and Transition from Anionic to Cationic Surface Ligand Passivation of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals</atitle><jtitle>The journal of physical chemistry letters</jtitle><stitle>J PHYS CHEM LETT</stitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2020-02-06</date><risdate>2020</risdate><volume>11</volume><issue>3</issue><spage>652</spage><epage>658</epage><pages>652-658</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Recently, the structural stability of all-inorganic halide perovskite nanocrystals has been significantly enhanced. To understand the enhancement, we developed surface-passivation models for cubic CsPbBr3 nanocrystals with anionic (oleate) and cationic (oleylammonium) organic ligands based on first-principles calculations and nuclear magnetic resonance investigations. We propose that the (100) surface is initially terminated with oleate ligand complexes on PbBr2(100) surfaces. Also, the ligand transition to oleylammonium on the Pb-rich surfaces is expected due to the addition of metal halides (ZnBr2) during colloidal synthesis. The significant improvement in the structural stability of the cationic ligand-passivated CsPbBr3 nanocrystals was attributed to the suppressed exposure of the merging-vulnerable (110) surface, caused by the large difference in formation energy between the ligand-passivated (100) and Br-passivated (110) surfaces.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>31912739</pmid><doi>10.1021/acs.jpclett.9b03600</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4255-2068</orcidid><orcidid>https://orcid.org/0000-0003-2387-2066</orcidid><orcidid>https://orcid.org/0000-0003-1563-4738</orcidid><orcidid>https://orcid.org/0000-0002-9863-1374</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2020-02, Vol.11 (3), p.652-658
issn 1948-7185
1948-7185
language eng
recordid cdi_webofscience_primary_000512223400009
source ACS Publications
subjects Chemistry
Chemistry, Physical
Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Physical Sciences
Physics
Physics, Atomic, Molecular & Chemical
Science & Technology
Science & Technology - Other Topics
Technology
title Origin of the Stability and Transition from Anionic to Cationic Surface Ligand Passivation of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20the%20Stability%20and%20Transition%20from%20Anionic%20to%20Cationic%20Surface%20Ligand%20Passivation%20of%20All-Inorganic%20Cesium%20Lead%20Halide%20Perovskite%20Nanocrystals&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Yoo,%20Dongsuk&rft.date=2020-02-06&rft.volume=11&rft.issue=3&rft.spage=652&rft.epage=658&rft.pages=652-658&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.9b03600&rft_dat=%3Cproquest_webof%3E2334701162%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334701162&rft_id=info:pmid/31912739&rfr_iscdi=true