Carbon Sequestration and Contribution of CO2, CH4 and N2O Fluxes to Global Warming Potential from Paddy-Fallow Fields on Mineral Soil Beneath Peat in Central Hokkaido, Japan

Since each greenhouse gas (GHG) has its own radiative capacity, all three gasses (CO2, CH4 and N2O) must be accounted for by calculating the net global warming potential (GWP) in a crop production system. To compare the impact of GHG fluxes from the rice growing and the fallow season on the annual g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agriculture (Basel) 2020-01, Vol.10 (1), p.6, Article 6
Hauptverfasser: Naser, Habib Mohammad, Nagata, Osamu, Sultana, Sarmin, Hatano, Ryusuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 6
container_title Agriculture (Basel)
container_volume 10
creator Naser, Habib Mohammad
Nagata, Osamu
Sultana, Sarmin
Hatano, Ryusuke
description Since each greenhouse gas (GHG) has its own radiative capacity, all three gasses (CO2, CH4 and N2O) must be accounted for by calculating the net global warming potential (GWP) in a crop production system. To compare the impact of GHG fluxes from the rice growing and the fallow season on the annual gas fluxes, and their contribution to the GWP and carbon sequestration (CS) were evaluated. From May to April in Bibai (43 degrees 18 ' N, 141 degrees 44 ' E), in central Hokkaido, Japan, three rice paddy fields under actual management conditions were investigated to determine CS and the contribution of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes to GWP. Methane and N2O fluxes were measured by placing the chamber over the rice plants covering four hills and CO2 fluxes from rice plants root free space in paddy fields were taken as an indicator of soil microbial respiration (R-m) using the closed chamber method. Soil CS was calculated as the difference between net primary production (NPP) and loss of carbon (C) through R-m, emission of CH4 and harvest of crop C. Annual cumulative R-m ranged from 422 to 519 g C m(-2) yr(-1); which accounted for 54.7 to 55.5% of the rice growing season in particular. Annual cumulative CH4 emissions ranged from 75.5 to 116 g C m(-2) yr(-1) and this contribution occurred entirely during the rice growing period. Total cumulative N2O emissions ranged from 0.091 to 0.154 g N m(-2) yr(-1) and from 73.5 to 81.3% of the total N2O emissions recorded during the winter-fallow season. The CS ranged from -305 to -365 g C m(-2) yr(-1), suggesting that C input by NPP may not be compensate for the loss of soil C. The loss of C in the winter-fallow season was much higher (62 to 66%) than in the growing season. The annual net GWP from the investigated paddy fields ranged from 3823 to 5016 g CO2 equivalent m(-2) yr(-1). Annual GWP(CH4) accounted for 71.9 to 86.1% of the annual net GWP predominantly from the rice growing period. These results indicate that CH4 dominated the net GWP of the rice paddy.
doi_str_mv 10.3390/agriculture10010006
format Article
fullrecord <record><control><sourceid>webofscience_doaj_</sourceid><recordid>TN_cdi_webofscience_primary_000511859500003CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fcfaa2005534461fa677636101f68a6f</doaj_id><sourcerecordid>000511859500003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-a9a8ecda2a837cbea6f6008b529270ac0982109a2529704aafc2d50d8581170d3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSNEpValv4CN9zT02s7DWULEdIoKM1JBXUY3fgxuPXZxHJX-KP4jnhlUsegCyfLj3HM-L05RvKXwnvMOLnATrZxdmqOmAHlB86o4YdC2JVQte_3P_bg4m6a77ICOcgHNSfG7xzgGT270z1lPKWKy-YVekT74FO0474VgSL9i56RfVvvhV7YiCzf_0hNJgVy6MKIjtxi31m_IOiTtk82KiWFL1qjUU7lA58IjWVjt1EQy8ov1OmbPTbCOfNReY_pB1nkn1pM-A3bDZbi_R6vCOfmMD-jfFEcG3aTP_p6nxffFp2_9srxeXV71H65LWUGVSuxQaKmQoeCtHDU2pgEQY8061gJK6ASj0CHLQgsVopFM1aBELShtQfHT4urAVQHvhodotxifhoB22AshbgaMyUqnByMNIgOoa15VDTXYtG3DGwrUNCJ_nFn8wJIxTFPU5plHYdgVOLxQYE6JQ-pRj8FM0mov9XMyW2pKRd3Vuy55b9O-tz7MPuXou_-P8j9XYrIC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Carbon Sequestration and Contribution of CO2, CH4 and N2O Fluxes to Global Warming Potential from Paddy-Fallow Fields on Mineral Soil Beneath Peat in Central Hokkaido, Japan</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Naser, Habib Mohammad ; Nagata, Osamu ; Sultana, Sarmin ; Hatano, Ryusuke</creator><creatorcontrib>Naser, Habib Mohammad ; Nagata, Osamu ; Sultana, Sarmin ; Hatano, Ryusuke</creatorcontrib><description>Since each greenhouse gas (GHG) has its own radiative capacity, all three gasses (CO2, CH4 and N2O) must be accounted for by calculating the net global warming potential (GWP) in a crop production system. To compare the impact of GHG fluxes from the rice growing and the fallow season on the annual gas fluxes, and their contribution to the GWP and carbon sequestration (CS) were evaluated. From May to April in Bibai (43 degrees 18 ' N, 141 degrees 44 ' E), in central Hokkaido, Japan, three rice paddy fields under actual management conditions were investigated to determine CS and the contribution of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes to GWP. Methane and N2O fluxes were measured by placing the chamber over the rice plants covering four hills and CO2 fluxes from rice plants root free space in paddy fields were taken as an indicator of soil microbial respiration (R-m) using the closed chamber method. Soil CS was calculated as the difference between net primary production (NPP) and loss of carbon (C) through R-m, emission of CH4 and harvest of crop C. Annual cumulative R-m ranged from 422 to 519 g C m(-2) yr(-1); which accounted for 54.7 to 55.5% of the rice growing season in particular. Annual cumulative CH4 emissions ranged from 75.5 to 116 g C m(-2) yr(-1) and this contribution occurred entirely during the rice growing period. Total cumulative N2O emissions ranged from 0.091 to 0.154 g N m(-2) yr(-1) and from 73.5 to 81.3% of the total N2O emissions recorded during the winter-fallow season. The CS ranged from -305 to -365 g C m(-2) yr(-1), suggesting that C input by NPP may not be compensate for the loss of soil C. The loss of C in the winter-fallow season was much higher (62 to 66%) than in the growing season. The annual net GWP from the investigated paddy fields ranged from 3823 to 5016 g CO2 equivalent m(-2) yr(-1). Annual GWP(CH4) accounted for 71.9 to 86.1% of the annual net GWP predominantly from the rice growing period. These results indicate that CH4 dominated the net GWP of the rice paddy.</description><identifier>ISSN: 2077-0472</identifier><identifier>EISSN: 2077-0472</identifier><identifier>DOI: 10.3390/agriculture10010006</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Agriculture ; Agronomy ; carbon dioxide ; carbon sequestration ; global warming potential ; Life Sciences &amp; Biomedicine ; methane ; nitrous oxide ; paddy field ; Science &amp; Technology</subject><ispartof>Agriculture (Basel), 2020-01, Vol.10 (1), p.6, Article 6</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>19</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000511859500003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c404t-a9a8ecda2a837cbea6f6008b529270ac0982109a2529704aafc2d50d8581170d3</citedby><cites>FETCH-LOGICAL-c404t-a9a8ecda2a837cbea6f6008b529270ac0982109a2529704aafc2d50d8581170d3</cites><orcidid>0000-0002-2261-1799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27928,27929</link.rule.ids></links><search><creatorcontrib>Naser, Habib Mohammad</creatorcontrib><creatorcontrib>Nagata, Osamu</creatorcontrib><creatorcontrib>Sultana, Sarmin</creatorcontrib><creatorcontrib>Hatano, Ryusuke</creatorcontrib><title>Carbon Sequestration and Contribution of CO2, CH4 and N2O Fluxes to Global Warming Potential from Paddy-Fallow Fields on Mineral Soil Beneath Peat in Central Hokkaido, Japan</title><title>Agriculture (Basel)</title><addtitle>AGRICULTURE-BASEL</addtitle><description>Since each greenhouse gas (GHG) has its own radiative capacity, all three gasses (CO2, CH4 and N2O) must be accounted for by calculating the net global warming potential (GWP) in a crop production system. To compare the impact of GHG fluxes from the rice growing and the fallow season on the annual gas fluxes, and their contribution to the GWP and carbon sequestration (CS) were evaluated. From May to April in Bibai (43 degrees 18 ' N, 141 degrees 44 ' E), in central Hokkaido, Japan, three rice paddy fields under actual management conditions were investigated to determine CS and the contribution of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes to GWP. Methane and N2O fluxes were measured by placing the chamber over the rice plants covering four hills and CO2 fluxes from rice plants root free space in paddy fields were taken as an indicator of soil microbial respiration (R-m) using the closed chamber method. Soil CS was calculated as the difference between net primary production (NPP) and loss of carbon (C) through R-m, emission of CH4 and harvest of crop C. Annual cumulative R-m ranged from 422 to 519 g C m(-2) yr(-1); which accounted for 54.7 to 55.5% of the rice growing season in particular. Annual cumulative CH4 emissions ranged from 75.5 to 116 g C m(-2) yr(-1) and this contribution occurred entirely during the rice growing period. Total cumulative N2O emissions ranged from 0.091 to 0.154 g N m(-2) yr(-1) and from 73.5 to 81.3% of the total N2O emissions recorded during the winter-fallow season. The CS ranged from -305 to -365 g C m(-2) yr(-1), suggesting that C input by NPP may not be compensate for the loss of soil C. The loss of C in the winter-fallow season was much higher (62 to 66%) than in the growing season. The annual net GWP from the investigated paddy fields ranged from 3823 to 5016 g CO2 equivalent m(-2) yr(-1). Annual GWP(CH4) accounted for 71.9 to 86.1% of the annual net GWP predominantly from the rice growing period. These results indicate that CH4 dominated the net GWP of the rice paddy.</description><subject>Agriculture</subject><subject>Agronomy</subject><subject>carbon dioxide</subject><subject>carbon sequestration</subject><subject>global warming potential</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>methane</subject><subject>nitrous oxide</subject><subject>paddy field</subject><subject>Science &amp; Technology</subject><issn>2077-0472</issn><issn>2077-0472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUtv1DAUhSNEpValv4CN9zT02s7DWULEdIoKM1JBXUY3fgxuPXZxHJX-KP4jnhlUsegCyfLj3HM-L05RvKXwnvMOLnATrZxdmqOmAHlB86o4YdC2JVQte_3P_bg4m6a77ICOcgHNSfG7xzgGT270z1lPKWKy-YVekT74FO0474VgSL9i56RfVvvhV7YiCzf_0hNJgVy6MKIjtxi31m_IOiTtk82KiWFL1qjUU7lA58IjWVjt1EQy8ov1OmbPTbCOfNReY_pB1nkn1pM-A3bDZbi_R6vCOfmMD-jfFEcG3aTP_p6nxffFp2_9srxeXV71H65LWUGVSuxQaKmQoeCtHDU2pgEQY8061gJK6ASj0CHLQgsVopFM1aBELShtQfHT4urAVQHvhodotxifhoB22AshbgaMyUqnByMNIgOoa15VDTXYtG3DGwrUNCJ_nFn8wJIxTFPU5plHYdgVOLxQYE6JQ-pRj8FM0mov9XMyW2pKRd3Vuy55b9O-tz7MPuXou_-P8j9XYrIC</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Naser, Habib Mohammad</creator><creator>Nagata, Osamu</creator><creator>Sultana, Sarmin</creator><creator>Hatano, Ryusuke</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2261-1799</orcidid></search><sort><creationdate>20200101</creationdate><title>Carbon Sequestration and Contribution of CO2, CH4 and N2O Fluxes to Global Warming Potential from Paddy-Fallow Fields on Mineral Soil Beneath Peat in Central Hokkaido, Japan</title><author>Naser, Habib Mohammad ; Nagata, Osamu ; Sultana, Sarmin ; Hatano, Ryusuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-a9a8ecda2a837cbea6f6008b529270ac0982109a2529704aafc2d50d8581170d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Agronomy</topic><topic>carbon dioxide</topic><topic>carbon sequestration</topic><topic>global warming potential</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>methane</topic><topic>nitrous oxide</topic><topic>paddy field</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naser, Habib Mohammad</creatorcontrib><creatorcontrib>Nagata, Osamu</creatorcontrib><creatorcontrib>Sultana, Sarmin</creatorcontrib><creatorcontrib>Hatano, Ryusuke</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agriculture (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naser, Habib Mohammad</au><au>Nagata, Osamu</au><au>Sultana, Sarmin</au><au>Hatano, Ryusuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Sequestration and Contribution of CO2, CH4 and N2O Fluxes to Global Warming Potential from Paddy-Fallow Fields on Mineral Soil Beneath Peat in Central Hokkaido, Japan</atitle><jtitle>Agriculture (Basel)</jtitle><stitle>AGRICULTURE-BASEL</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>6</spage><pages>6-</pages><artnum>6</artnum><issn>2077-0472</issn><eissn>2077-0472</eissn><abstract>Since each greenhouse gas (GHG) has its own radiative capacity, all three gasses (CO2, CH4 and N2O) must be accounted for by calculating the net global warming potential (GWP) in a crop production system. To compare the impact of GHG fluxes from the rice growing and the fallow season on the annual gas fluxes, and their contribution to the GWP and carbon sequestration (CS) were evaluated. From May to April in Bibai (43 degrees 18 ' N, 141 degrees 44 ' E), in central Hokkaido, Japan, three rice paddy fields under actual management conditions were investigated to determine CS and the contribution of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes to GWP. Methane and N2O fluxes were measured by placing the chamber over the rice plants covering four hills and CO2 fluxes from rice plants root free space in paddy fields were taken as an indicator of soil microbial respiration (R-m) using the closed chamber method. Soil CS was calculated as the difference between net primary production (NPP) and loss of carbon (C) through R-m, emission of CH4 and harvest of crop C. Annual cumulative R-m ranged from 422 to 519 g C m(-2) yr(-1); which accounted for 54.7 to 55.5% of the rice growing season in particular. Annual cumulative CH4 emissions ranged from 75.5 to 116 g C m(-2) yr(-1) and this contribution occurred entirely during the rice growing period. Total cumulative N2O emissions ranged from 0.091 to 0.154 g N m(-2) yr(-1) and from 73.5 to 81.3% of the total N2O emissions recorded during the winter-fallow season. The CS ranged from -305 to -365 g C m(-2) yr(-1), suggesting that C input by NPP may not be compensate for the loss of soil C. The loss of C in the winter-fallow season was much higher (62 to 66%) than in the growing season. The annual net GWP from the investigated paddy fields ranged from 3823 to 5016 g CO2 equivalent m(-2) yr(-1). Annual GWP(CH4) accounted for 71.9 to 86.1% of the annual net GWP predominantly from the rice growing period. These results indicate that CH4 dominated the net GWP of the rice paddy.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/agriculture10010006</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2261-1799</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0472
ispartof Agriculture (Basel), 2020-01, Vol.10 (1), p.6, Article 6
issn 2077-0472
2077-0472
language eng
recordid cdi_webofscience_primary_000511859500003CitationCount
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Agriculture
Agronomy
carbon dioxide
carbon sequestration
global warming potential
Life Sciences & Biomedicine
methane
nitrous oxide
paddy field
Science & Technology
title Carbon Sequestration and Contribution of CO2, CH4 and N2O Fluxes to Global Warming Potential from Paddy-Fallow Fields on Mineral Soil Beneath Peat in Central Hokkaido, Japan
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Sequestration%20and%20Contribution%20of%20CO2,%20CH4%20and%20N2O%20Fluxes%20to%20Global%20Warming%20Potential%20from%20Paddy-Fallow%20Fields%20on%20Mineral%20Soil%20Beneath%20Peat%20in%20Central%20Hokkaido,%20Japan&rft.jtitle=Agriculture%20(Basel)&rft.au=Naser,%20Habib%20Mohammad&rft.date=2020-01-01&rft.volume=10&rft.issue=1&rft.spage=6&rft.pages=6-&rft.artnum=6&rft.issn=2077-0472&rft.eissn=2077-0472&rft_id=info:doi/10.3390/agriculture10010006&rft_dat=%3Cwebofscience_doaj_%3E000511859500003%3C/webofscience_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_fcfaa2005534461fa677636101f68a6f&rfr_iscdi=true