Bag of contour fragments for improvement of object segmentation
Many state-of-the-art shape features have been proposed for the shape recognition task. In this paper, to explore whether a shape feature influences object segmentation, we propose a specific shape feature, Fisher shape (a form of bag of contour fragments), and we combine this with the appearance fe...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2020, Vol.50 (1), p.203-221 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 221 |
---|---|
container_issue | 1 |
container_start_page | 203 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 50 |
creator | Yu, Qian Yang, Chengzhuan Fan, Honghui Zhu, Hongjin Ye, Feiyue Wei, Hui |
description | Many state-of-the-art shape features have been proposed for the shape recognition task. In this paper, to explore whether a shape feature influences object segmentation, we propose a specific shape feature, Fisher shape (a form of bag of contour fragments), and we combine this with the appearance feature with multiple kernel learning to create a pipeline of object segmentation system. The experimental results on benchmark datasets clearly demonstrate that the pipeline of object segmentation is effective and that the Fisher shape can improve object segmentation with only the appearance feature. |
doi_str_mv | 10.1007/s10489-019-01525-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2257967163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2257967163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f7138855f311f80f5ad9afb8c1004cc410473f905b8c50647c0c405a5a3ba2c63</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFe_gKeC5-hMkzTNSXTxHyx4UfAWsjFZWmyzJl3Bb2-6Fbx5GAaG33vzeIScI1wigLxKCLxRFHAaUQmKB6RAIRmVXMlDUoCqOK1r9XZMTlLqAIAxwIJc35pNGXxpwzCGXSx9NJveDWMqfYhl229j-HLTYYLCunN2LJPbI2Zsw3BKjrz5SO7sdy_I6_3dy_KRrp4fnpY3K2oZqpF6iaxphPAM0TfghXlXxq8bm9Nza3mOL5lXIPJJQM2lBctBGGHY2lS2ZgtyMfvmQJ87l0bd5bhDfqmrSkhVS6xZpqqZsjGkFJ3X29j2Jn5rBD0VpeeidC5K74vSmEVsFqUMDxsX_6z_Uf0AeLxqog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257967163</pqid></control><display><type>article</type><title>Bag of contour fragments for improvement of object segmentation</title><source>Springer Nature - Complete Springer Journals</source><creator>Yu, Qian ; Yang, Chengzhuan ; Fan, Honghui ; Zhu, Hongjin ; Ye, Feiyue ; Wei, Hui</creator><creatorcontrib>Yu, Qian ; Yang, Chengzhuan ; Fan, Honghui ; Zhu, Hongjin ; Ye, Feiyue ; Wei, Hui</creatorcontrib><description>Many state-of-the-art shape features have been proposed for the shape recognition task. In this paper, to explore whether a shape feature influences object segmentation, we propose a specific shape feature, Fisher shape (a form of bag of contour fragments), and we combine this with the appearance feature with multiple kernel learning to create a pipeline of object segmentation system. The experimental results on benchmark datasets clearly demonstrate that the pipeline of object segmentation is effective and that the Fisher shape can improve object segmentation with only the appearance feature.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-019-01525-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Contours ; Fragments ; Machines ; Manufacturing ; Mechanical Engineering ; Processes ; Segmentation ; Shape ; Shape recognition</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2020, Vol.50 (1), p.203-221</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Applied Intelligence is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f7138855f311f80f5ad9afb8c1004cc410473f905b8c50647c0c405a5a3ba2c63</citedby><cites>FETCH-LOGICAL-c319t-f7138855f311f80f5ad9afb8c1004cc410473f905b8c50647c0c405a5a3ba2c63</cites><orcidid>0000-0002-6224-5607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-019-01525-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-019-01525-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yu, Qian</creatorcontrib><creatorcontrib>Yang, Chengzhuan</creatorcontrib><creatorcontrib>Fan, Honghui</creatorcontrib><creatorcontrib>Zhu, Hongjin</creatorcontrib><creatorcontrib>Ye, Feiyue</creatorcontrib><creatorcontrib>Wei, Hui</creatorcontrib><title>Bag of contour fragments for improvement of object segmentation</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Many state-of-the-art shape features have been proposed for the shape recognition task. In this paper, to explore whether a shape feature influences object segmentation, we propose a specific shape feature, Fisher shape (a form of bag of contour fragments), and we combine this with the appearance feature with multiple kernel learning to create a pipeline of object segmentation system. The experimental results on benchmark datasets clearly demonstrate that the pipeline of object segmentation is effective and that the Fisher shape can improve object segmentation with only the appearance feature.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Contours</subject><subject>Fragments</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Processes</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Shape recognition</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYMoWFe_gKeC5-hMkzTNSXTxHyx4UfAWsjFZWmyzJl3Bb2-6Fbx5GAaG33vzeIScI1wigLxKCLxRFHAaUQmKB6RAIRmVXMlDUoCqOK1r9XZMTlLqAIAxwIJc35pNGXxpwzCGXSx9NJveDWMqfYhl229j-HLTYYLCunN2LJPbI2Zsw3BKjrz5SO7sdy_I6_3dy_KRrp4fnpY3K2oZqpF6iaxphPAM0TfghXlXxq8bm9Nza3mOL5lXIPJJQM2lBctBGGHY2lS2ZgtyMfvmQJ87l0bd5bhDfqmrSkhVS6xZpqqZsjGkFJ3X29j2Jn5rBD0VpeeidC5K74vSmEVsFqUMDxsX_6z_Uf0AeLxqog</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Yu, Qian</creator><creator>Yang, Chengzhuan</creator><creator>Fan, Honghui</creator><creator>Zhu, Hongjin</creator><creator>Ye, Feiyue</creator><creator>Wei, Hui</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6224-5607</orcidid></search><sort><creationdate>2020</creationdate><title>Bag of contour fragments for improvement of object segmentation</title><author>Yu, Qian ; Yang, Chengzhuan ; Fan, Honghui ; Zhu, Hongjin ; Ye, Feiyue ; Wei, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f7138855f311f80f5ad9afb8c1004cc410473f905b8c50647c0c405a5a3ba2c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Contours</topic><topic>Fragments</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Processes</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Shape recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Qian</creatorcontrib><creatorcontrib>Yang, Chengzhuan</creatorcontrib><creatorcontrib>Fan, Honghui</creatorcontrib><creatorcontrib>Zhu, Hongjin</creatorcontrib><creatorcontrib>Ye, Feiyue</creatorcontrib><creatorcontrib>Wei, Hui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Qian</au><au>Yang, Chengzhuan</au><au>Fan, Honghui</au><au>Zhu, Hongjin</au><au>Ye, Feiyue</au><au>Wei, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bag of contour fragments for improvement of object segmentation</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2020</date><risdate>2020</risdate><volume>50</volume><issue>1</issue><spage>203</spage><epage>221</epage><pages>203-221</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Many state-of-the-art shape features have been proposed for the shape recognition task. In this paper, to explore whether a shape feature influences object segmentation, we propose a specific shape feature, Fisher shape (a form of bag of contour fragments), and we combine this with the appearance feature with multiple kernel learning to create a pipeline of object segmentation system. The experimental results on benchmark datasets clearly demonstrate that the pipeline of object segmentation is effective and that the Fisher shape can improve object segmentation with only the appearance feature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-019-01525-1</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6224-5607</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2020, Vol.50 (1), p.203-221 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_journals_2257967163 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial Intelligence Computer Science Contours Fragments Machines Manufacturing Mechanical Engineering Processes Segmentation Shape Shape recognition |
title | Bag of contour fragments for improvement of object segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bag%20of%20contour%20fragments%20for%20improvement%20of%20object%20segmentation&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Yu,%20Qian&rft.date=2020&rft.volume=50&rft.issue=1&rft.spage=203&rft.epage=221&rft.pages=203-221&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-019-01525-1&rft_dat=%3Cproquest_cross%3E2257967163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257967163&rft_id=info:pmid/&rfr_iscdi=true |