From 33% to 57% - an elevated potential of efficiency limit for indoor photovoltaics

The limiting power conversion efficiency (PCE) defines the theoretical maximum efficiency of photovoltaic devices. The classic Shockley-Queisser method has predicted 33% for a single p-n junction solar cell under AM1.5G illumination, but those for alternative photovoltaic materials and under other i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020, Vol.8 (4), p.1717-1723
Hauptverfasser: Ho, Johnny Ka Wai, Yin, Hang, So, Shu Kong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1723
container_issue 4
container_start_page 1717
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Ho, Johnny Ka Wai
Yin, Hang
So, Shu Kong
description The limiting power conversion efficiency (PCE) defines the theoretical maximum efficiency of photovoltaic devices. The classic Shockley-Queisser method has predicted 33% for a single p-n junction solar cell under AM1.5G illumination, but those for alternative photovoltaic materials and under other illumination conditions are not well-established. The emergence of indoor photovoltaics (IPVs) generates considerable interest in this regard. Here, we explore how thin-film photovoltaic materials with different bandgaps, absorption properties, and thicknesses, perform as IPV devices. We show a material bandgap of 1.82-1.96 eV to allow a limiting 51-57% PCE for a single-junction device under various indoor illuminations. In addition, typical organic photovoltaic thin films of ∼100 nm only give limiting PCEs of merely ∼28%, but >40% for a 200-250 nm thick device making use of the second thickness peak. We also present the limiting device parameters under different illuminance, serving as a comprehensive guide for emergent IPV development. The limiting PCE and the optimal V oc depend only weakly on the indoor light source and the domestic illuminance (100-1000 lx). In contrast, the limiting J sc increases linearly with the illuminance (∼11-13 μA cm −2 /100 lx). Our study offers an explicit reference for evaluating the quality of an IPV device and a guideline for future material selection for efficient IPVs. Indoor photovoltaics is of appealing application potential given the high limiting PCE of 57%.
doi_str_mv 10.1039/c9ta11894b
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000511170800012CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346402195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-4434710301751c8df1ddd65c3a49ab55e67baa30c7690e5c1fdd58153172dfd93</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWGov3oWA9KKsJptkd3Osi1Wh4KWel2w-MGW7qUla6b837Uq9OpeZw_POxzsAXGP0gBHhj5JHgXHFaXsGRjliKCspL85PdVVdgkkIK5SiQqjgfASWc-_WkJApjA6ycgozKHqoO70TUSu4cVH30YoOOgO1MVZa3cs97OzaRmich7ZXLqXNp4tu57oorAxX4MKILujJbx6Dj_nzsn7NFu8vb_VskUnKiphRSmiZNke4ZFhWymClVMEkEZSLljFdlK0QBMmy4EgziY1SrMKM4DJXRnEyBrdD3413X1sdYrNyW9-nkU1OaEFRjjlL1N1ASe9C8No0G2_Xwu8bjJqDcU3Nl7OjcU8Jrgb4W7fOhOO5-iRIxjGMcXmwD-G8tlFE6_rabfuYpPf_lyb6ZqB9kCfo74PkB_HmiI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2346402195</pqid></control><display><type>article</type><title>From 33% to 57% - an elevated potential of efficiency limit for indoor photovoltaics</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Ho, Johnny Ka Wai ; Yin, Hang ; So, Shu Kong</creator><creatorcontrib>Ho, Johnny Ka Wai ; Yin, Hang ; So, Shu Kong</creatorcontrib><description>The limiting power conversion efficiency (PCE) defines the theoretical maximum efficiency of photovoltaic devices. The classic Shockley-Queisser method has predicted 33% for a single p-n junction solar cell under AM1.5G illumination, but those for alternative photovoltaic materials and under other illumination conditions are not well-established. The emergence of indoor photovoltaics (IPVs) generates considerable interest in this regard. Here, we explore how thin-film photovoltaic materials with different bandgaps, absorption properties, and thicknesses, perform as IPV devices. We show a material bandgap of 1.82-1.96 eV to allow a limiting 51-57% PCE for a single-junction device under various indoor illuminations. In addition, typical organic photovoltaic thin films of ∼100 nm only give limiting PCEs of merely ∼28%, but &gt;40% for a 200-250 nm thick device making use of the second thickness peak. We also present the limiting device parameters under different illuminance, serving as a comprehensive guide for emergent IPV development. The limiting PCE and the optimal V oc depend only weakly on the indoor light source and the domestic illuminance (100-1000 lx). In contrast, the limiting J sc increases linearly with the illuminance (∼11-13 μA cm −2 /100 lx). Our study offers an explicit reference for evaluating the quality of an IPV device and a guideline for future material selection for efficient IPVs. Indoor photovoltaics is of appealing application potential given the high limiting PCE of 57%.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta11894b</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Chemistry ; Chemistry, Physical ; Constraining ; Efficiency ; Energy &amp; Fuels ; Energy conversion efficiency ; Energy gap ; Illuminance ; Illumination ; Indoor environments ; Light sources ; Materials Science ; Materials Science, Multidisciplinary ; Materials selection ; P-n junctions ; Photovoltaic cells ; Photovoltaics ; Physical Sciences ; Science &amp; Technology ; Solar cells ; Technology ; Thickness ; Thin films</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020, Vol.8 (4), p.1717-1723</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>92</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000511170800012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c456t-4434710301751c8df1ddd65c3a49ab55e67baa30c7690e5c1fdd58153172dfd93</citedby><cites>FETCH-LOGICAL-c456t-4434710301751c8df1ddd65c3a49ab55e67baa30c7690e5c1fdd58153172dfd93</cites><orcidid>0000-0003-2600-7238 ; 0000-0002-8805-4489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27928,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Ho, Johnny Ka Wai</creatorcontrib><creatorcontrib>Yin, Hang</creatorcontrib><creatorcontrib>So, Shu Kong</creatorcontrib><title>From 33% to 57% - an elevated potential of efficiency limit for indoor photovoltaics</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><addtitle>J MATER CHEM A</addtitle><description>The limiting power conversion efficiency (PCE) defines the theoretical maximum efficiency of photovoltaic devices. The classic Shockley-Queisser method has predicted 33% for a single p-n junction solar cell under AM1.5G illumination, but those for alternative photovoltaic materials and under other illumination conditions are not well-established. The emergence of indoor photovoltaics (IPVs) generates considerable interest in this regard. Here, we explore how thin-film photovoltaic materials with different bandgaps, absorption properties, and thicknesses, perform as IPV devices. We show a material bandgap of 1.82-1.96 eV to allow a limiting 51-57% PCE for a single-junction device under various indoor illuminations. In addition, typical organic photovoltaic thin films of ∼100 nm only give limiting PCEs of merely ∼28%, but &gt;40% for a 200-250 nm thick device making use of the second thickness peak. We also present the limiting device parameters under different illuminance, serving as a comprehensive guide for emergent IPV development. The limiting PCE and the optimal V oc depend only weakly on the indoor light source and the domestic illuminance (100-1000 lx). In contrast, the limiting J sc increases linearly with the illuminance (∼11-13 μA cm −2 /100 lx). Our study offers an explicit reference for evaluating the quality of an IPV device and a guideline for future material selection for efficient IPVs. Indoor photovoltaics is of appealing application potential given the high limiting PCE of 57%.</description><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Constraining</subject><subject>Efficiency</subject><subject>Energy &amp; Fuels</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Illuminance</subject><subject>Illumination</subject><subject>Indoor environments</subject><subject>Light sources</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Materials selection</subject><subject>P-n junctions</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Solar cells</subject><subject>Technology</subject><subject>Thickness</subject><subject>Thin films</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkU1LAzEQhoMoWGov3oWA9KKsJptkd3Osi1Wh4KWel2w-MGW7qUla6b837Uq9OpeZw_POxzsAXGP0gBHhj5JHgXHFaXsGRjliKCspL85PdVVdgkkIK5SiQqjgfASWc-_WkJApjA6ycgozKHqoO70TUSu4cVH30YoOOgO1MVZa3cs97OzaRmich7ZXLqXNp4tu57oorAxX4MKILujJbx6Dj_nzsn7NFu8vb_VskUnKiphRSmiZNke4ZFhWymClVMEkEZSLljFdlK0QBMmy4EgziY1SrMKM4DJXRnEyBrdD3413X1sdYrNyW9-nkU1OaEFRjjlL1N1ASe9C8No0G2_Xwu8bjJqDcU3Nl7OjcU8Jrgb4W7fOhOO5-iRIxjGMcXmwD-G8tlFE6_rabfuYpPf_lyb6ZqB9kCfo74PkB_HmiI0</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ho, Johnny Ka Wai</creator><creator>Yin, Hang</creator><creator>So, Shu Kong</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2600-7238</orcidid><orcidid>https://orcid.org/0000-0002-8805-4489</orcidid></search><sort><creationdate>2020</creationdate><title>From 33% to 57% - an elevated potential of efficiency limit for indoor photovoltaics</title><author>Ho, Johnny Ka Wai ; Yin, Hang ; So, Shu Kong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-4434710301751c8df1ddd65c3a49ab55e67baa30c7690e5c1fdd58153172dfd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Constraining</topic><topic>Efficiency</topic><topic>Energy &amp; Fuels</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Illuminance</topic><topic>Illumination</topic><topic>Indoor environments</topic><topic>Light sources</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Materials selection</topic><topic>P-n junctions</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Solar cells</topic><topic>Technology</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Johnny Ka Wai</creatorcontrib><creatorcontrib>Yin, Hang</creatorcontrib><creatorcontrib>So, Shu Kong</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Johnny Ka Wai</au><au>Yin, Hang</au><au>So, Shu Kong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From 33% to 57% - an elevated potential of efficiency limit for indoor photovoltaics</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><stitle>J MATER CHEM A</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><issue>4</issue><spage>1717</spage><epage>1723</epage><pages>1717-1723</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The limiting power conversion efficiency (PCE) defines the theoretical maximum efficiency of photovoltaic devices. The classic Shockley-Queisser method has predicted 33% for a single p-n junction solar cell under AM1.5G illumination, but those for alternative photovoltaic materials and under other illumination conditions are not well-established. The emergence of indoor photovoltaics (IPVs) generates considerable interest in this regard. Here, we explore how thin-film photovoltaic materials with different bandgaps, absorption properties, and thicknesses, perform as IPV devices. We show a material bandgap of 1.82-1.96 eV to allow a limiting 51-57% PCE for a single-junction device under various indoor illuminations. In addition, typical organic photovoltaic thin films of ∼100 nm only give limiting PCEs of merely ∼28%, but &gt;40% for a 200-250 nm thick device making use of the second thickness peak. We also present the limiting device parameters under different illuminance, serving as a comprehensive guide for emergent IPV development. The limiting PCE and the optimal V oc depend only weakly on the indoor light source and the domestic illuminance (100-1000 lx). In contrast, the limiting J sc increases linearly with the illuminance (∼11-13 μA cm −2 /100 lx). Our study offers an explicit reference for evaluating the quality of an IPV device and a guideline for future material selection for efficient IPVs. Indoor photovoltaics is of appealing application potential given the high limiting PCE of 57%.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><doi>10.1039/c9ta11894b</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2600-7238</orcidid><orcidid>https://orcid.org/0000-0002-8805-4489</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020, Vol.8 (4), p.1717-1723
issn 2050-7488
2050-7496
language eng
recordid cdi_webofscience_primary_000511170800012CitationCount
source Royal Society Of Chemistry Journals 2008-; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Chemistry
Chemistry, Physical
Constraining
Efficiency
Energy & Fuels
Energy conversion efficiency
Energy gap
Illuminance
Illumination
Indoor environments
Light sources
Materials Science
Materials Science, Multidisciplinary
Materials selection
P-n junctions
Photovoltaic cells
Photovoltaics
Physical Sciences
Science & Technology
Solar cells
Technology
Thickness
Thin films
title From 33% to 57% - an elevated potential of efficiency limit for indoor photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%2033%25%20to%2057%25%20-%20an%20elevated%20potential%20of%20efficiency%20limit%20for%20indoor%20photovoltaics&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ho,%20Johnny%20Ka%20Wai&rft.date=2020&rft.volume=8&rft.issue=4&rft.spage=1717&rft.epage=1723&rft.pages=1717-1723&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta11894b&rft_dat=%3Cproquest_webof%3E2346402195%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2346402195&rft_id=info:pmid/&rfr_iscdi=true