Evolution of cellular dislocation structures and defects in additively manufactured austenitic stainless steel under ion irradiation
The evolution of irradiation-induced defects in additively manufactured (AM) austenitic stainless steel was investigated in situ by 1 MeV Kr ion irradiation at 450 and 600 °C in a transmission electron microscope. Cellular dislocation structure in AM steel act as sink/trap sites for the irradiation-...
Gespeichert in:
Veröffentlicht in: | Scripta materialia 2020-03, Vol.178 (C), p.245-250 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The evolution of irradiation-induced defects in additively manufactured (AM) austenitic stainless steel was investigated in situ by 1 MeV Kr ion irradiation at 450 and 600 °C in a transmission electron microscope. Cellular dislocation structure in AM steel act as sink/trap sites for the irradiation-induced defects, resulting in the lower density and smaller dislocation loops in AM steel than conventional forged (CF) steel at 450 °C. The higher stacking fault energy and local stress concentration induced by cellular dislocation structure in AM steel promotes the unfaulting process and the formation of network dislocation at 600 °C.
[Display omitted] |
---|---|
ISSN: | 1359-6462 1872-8456 |
DOI: | 10.1016/j.scriptamat.2019.11.036 |