Dose Gradient Index for Stereotactic Radiosurgery/Radiation Therapy
Steep dose falloff outside of tumors is a hallmark of stereotactic radiosurgery (SRS) and radiation therapy (SRT). Dose gradient index (DGI) quantifies the dose drop off. Tables of DGIs versus target volumes have been published for body sites, but none is available for brain. This study recommends g...
Gespeichert in:
Veröffentlicht in: | International journal of radiation oncology, biology, physics biology, physics, 2020-03, Vol.106 (3), p.604-611 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Steep dose falloff outside of tumors is a hallmark of stereotactic radiosurgery (SRS) and radiation therapy (SRT). Dose gradient index (DGI) quantifies the dose drop off. Tables of DGIs versus target volumes have been published for body sites, but none is available for brain. This study recommends guidelines for DGIs for brain SRS/SRT treatments based on clinical CyberKnife (CK) cases.
Four hundred ninety-five plans for patients with central nervous system tumors treated with CK at our institution between March 2015 and May 2018 were analyzed. The CK treatment planning system MultiPlan was used for planning. SRS/SRT plans were stratified into 6 groups by tumor size (Group I [0-1 cm3], II [1.0-3.0 cm3], III [3.0-5.0 cm3], IV [5.0-10.0 cm3], V [10.0-15.0 cm3], and VI [15.0-40.0 cm3]). Ideal and minimally acceptable DGIs were determined for each size group. To evaluate the effect of target shape on DGI criteria, the plans were divided into 4 target shape groups: (1) homogeneous shape (circular), (2) adjacent to radiosensitive organs at risk (adjacent), (3) irregularly shaped (irregular), and (4) multiple target plans (multilesion). The mean for each target size group was defined as the ideal DGI. Minimally acceptable DGI criteria are specified to reject the lowest 10% of cases.
The minimal acceptable DGIs were 83 (Group I), 72 (II), 65 (III), 58 (IV), 52 (V), and 35 (VI). The ideal DGI is designated to evaluate SRS/SRT plans for homogeneous circular lesions, whereas minimal DGI is chosen to assess the plans for irregular, adjacent to organs at risk, and multilesions. SRS/SRT plans with higher DGI values are correlated with lower irradiated normal tissue volumes.
This study provides a table of DGIs for brain SRS/SRT treatments as a tool for assessing the quality of intracranial SRS/SRT plans. DGI guidelines support SRS/SRT planning that results in lower risk of radionecrosis. |
---|---|
ISSN: | 0360-3016 1879-355X |
DOI: | 10.1016/j.ijrobp.2019.11.408 |