Quantum two-mode squeezing radar and noise radar: covariance matrices for signal processing

Recently, the authors have built and evaluated a prototype quantum radar in the laboratory which operates at microwave frequencies. This radar, which they call a quantum two-mode squeezing radar (QTMS radar), generates a pair of entangled microwave signals and transmits one of them through free spac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET radar, sonar & navigation sonar & navigation, 2020-01, Vol.14 (1), p.97-104
Hauptverfasser: Luong, David, Balaji, Bhashyam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue 1
container_start_page 97
container_title IET radar, sonar & navigation
container_volume 14
creator Luong, David
Balaji, Bhashyam
description Recently, the authors have built and evaluated a prototype quantum radar in the laboratory which operates at microwave frequencies. This radar, which they call a quantum two-mode squeezing radar (QTMS radar), generates a pair of entangled microwave signals and transmits one of them through free space, using the other signal as a reference to perform matched filtering. The specific type of entanglement is called a two-mode squeezed vacuum, a type of continuous-variable entanglement between two frequencies. Motivated by the success of these experiments, they try to better understand the entangled QTMS radar signals in this study. They do so by comparing it to a simpler, more conventional radar system, which they call a two-mode noise radar (TMN radar). They also show how both types of radars are related to standard noise radars as described in the literature. They find that the signals for QTMS radar signals and TMN radar signals have the same mathematical form and that they are related to noise radar by a simple mathematical transformation. This shows that QTMS radar signals can be emulated by a fictional, idealised TMN radar and that it is possible to apply results from the noise radar literature to QTMS radar.
doi_str_mv 10.1049/iet-rsn.2019.0090
format Article
fullrecord <record><control><sourceid>wiley_webof</sourceid><recordid>TN_cdi_webofscience_primary_000510750800012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>RSN2BF01280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3770-1782728333be310d58cb64cfebf22220f029e68ea43d142a8ebdea0339437c2d3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhiMEEqXwA9i8o5SznTRON6goIFUgviaGyHEulavWBjuhKr8eR6k6Al58tu55dfdE0TmFEYUkv9TYxM6bEQOajwByOIgGNEtpLLKcHe5rkRxHJ94vAdJ0nOSD6P2plaZp16TZ2HhtKyT-s0X81mZBnKykI9JUxFjtsX9PiLJf0mlpFJK1bJxW6EltHfF6YeSKfDgbfnwIOI2OarnyeLa7h9Hb7OZ1ehfPH2_vp1fzWPEsg5hmgmVMcM5L5BSqVKhynKgay5qFAzWwHMcCZcIrmjApsKxQAud5wjPFKj6MaJ-rnPXeYV18OL2WbltQKDo7RbBTBDtFZ6fo7ATmomc2WNraK41hnz0HwQ-FLAURKspCt_h_91Q3stHWTG1rmoBOdqhe4fbvyYrnlwd2PQs5opsy7uGubWlbFwT7X7b6AVjVnKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum two-mode squeezing radar and noise radar: covariance matrices for signal processing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Wiley Online Library All Journals</source><creator>Luong, David ; Balaji, Bhashyam</creator><creatorcontrib>Luong, David ; Balaji, Bhashyam</creatorcontrib><description>Recently, the authors have built and evaluated a prototype quantum radar in the laboratory which operates at microwave frequencies. This radar, which they call a quantum two-mode squeezing radar (QTMS radar), generates a pair of entangled microwave signals and transmits one of them through free space, using the other signal as a reference to perform matched filtering. The specific type of entanglement is called a two-mode squeezed vacuum, a type of continuous-variable entanglement between two frequencies. Motivated by the success of these experiments, they try to better understand the entangled QTMS radar signals in this study. They do so by comparing it to a simpler, more conventional radar system, which they call a two-mode noise radar (TMN radar). They also show how both types of radars are related to standard noise radars as described in the literature. They find that the signals for QTMS radar signals and TMN radar signals have the same mathematical form and that they are related to noise radar by a simple mathematical transformation. This shows that QTMS radar signals can be emulated by a fictional, idealised TMN radar and that it is possible to apply results from the noise radar literature to QTMS radar.</description><identifier>ISSN: 1751-8784</identifier><identifier>ISSN: 1751-8792</identifier><identifier>EISSN: 1751-8792</identifier><identifier>DOI: 10.1049/iet-rsn.2019.0090</identifier><language>eng</language><publisher>HERTFORD: The Institution of Engineering and Technology</publisher><subject>continuous‐variable entanglement ; covariance matrices ; Engineering ; Engineering, Electrical &amp; Electronic ; entangled microwave signals ; entangled QTMS radar signals ; fictional TMN radar ; idealised TMN radar ; matched filters ; mathematical transformation ; microwave frequency ; microwave photonics ; noise radar literature ; optical information processing ; optical radar ; optical squeezing ; prototype quantum radar ; quantum entanglement ; quantum two‐mode squeezing radar ; radar signal processing ; Research Article ; Science &amp; Technology ; signal processing ; simpler radar system ; standard noise radars ; Technology ; Telecommunications ; TMN radar signals ; two‐mode noise radar ; two‐mode squeezed vacuum</subject><ispartof>IET radar, sonar &amp; navigation, 2020-01, Vol.14 (1), p.97-104</ispartof><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>33</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000510750800012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3770-1782728333be310d58cb64cfebf22220f029e68ea43d142a8ebdea0339437c2d3</citedby><cites>FETCH-LOGICAL-c3770-1782728333be310d58cb64cfebf22220f029e68ea43d142a8ebdea0339437c2d3</cites><orcidid>0000-0001-5570-0125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-rsn.2019.0090$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-rsn.2019.0090$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,11567,27929,27930,28253,45579,45580,46057,46481</link.rule.ids></links><search><creatorcontrib>Luong, David</creatorcontrib><creatorcontrib>Balaji, Bhashyam</creatorcontrib><title>Quantum two-mode squeezing radar and noise radar: covariance matrices for signal processing</title><title>IET radar, sonar &amp; navigation</title><addtitle>IET RADAR SONAR NAV</addtitle><description>Recently, the authors have built and evaluated a prototype quantum radar in the laboratory which operates at microwave frequencies. This radar, which they call a quantum two-mode squeezing radar (QTMS radar), generates a pair of entangled microwave signals and transmits one of them through free space, using the other signal as a reference to perform matched filtering. The specific type of entanglement is called a two-mode squeezed vacuum, a type of continuous-variable entanglement between two frequencies. Motivated by the success of these experiments, they try to better understand the entangled QTMS radar signals in this study. They do so by comparing it to a simpler, more conventional radar system, which they call a two-mode noise radar (TMN radar). They also show how both types of radars are related to standard noise radars as described in the literature. They find that the signals for QTMS radar signals and TMN radar signals have the same mathematical form and that they are related to noise radar by a simple mathematical transformation. This shows that QTMS radar signals can be emulated by a fictional, idealised TMN radar and that it is possible to apply results from the noise radar literature to QTMS radar.</description><subject>continuous‐variable entanglement</subject><subject>covariance matrices</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>entangled microwave signals</subject><subject>entangled QTMS radar signals</subject><subject>fictional TMN radar</subject><subject>idealised TMN radar</subject><subject>matched filters</subject><subject>mathematical transformation</subject><subject>microwave frequency</subject><subject>microwave photonics</subject><subject>noise radar literature</subject><subject>optical information processing</subject><subject>optical radar</subject><subject>optical squeezing</subject><subject>prototype quantum radar</subject><subject>quantum entanglement</subject><subject>quantum two‐mode squeezing radar</subject><subject>radar signal processing</subject><subject>Research Article</subject><subject>Science &amp; Technology</subject><subject>signal processing</subject><subject>simpler radar system</subject><subject>standard noise radars</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>TMN radar signals</subject><subject>two‐mode noise radar</subject><subject>two‐mode squeezed vacuum</subject><issn>1751-8784</issn><issn>1751-8792</issn><issn>1751-8792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkD1PwzAQhiMEEqXwA9i8o5SznTRON6goIFUgviaGyHEulavWBjuhKr8eR6k6Al58tu55dfdE0TmFEYUkv9TYxM6bEQOajwByOIgGNEtpLLKcHe5rkRxHJ94vAdJ0nOSD6P2plaZp16TZ2HhtKyT-s0X81mZBnKykI9JUxFjtsX9PiLJf0mlpFJK1bJxW6EltHfF6YeSKfDgbfnwIOI2OarnyeLa7h9Hb7OZ1ehfPH2_vp1fzWPEsg5hmgmVMcM5L5BSqVKhynKgay5qFAzWwHMcCZcIrmjApsKxQAud5wjPFKj6MaJ-rnPXeYV18OL2WbltQKDo7RbBTBDtFZ6fo7ATmomc2WNraK41hnz0HwQ-FLAURKspCt_h_91Q3stHWTG1rmoBOdqhe4fbvyYrnlwd2PQs5opsy7uGubWlbFwT7X7b6AVjVnKg</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Luong, David</creator><creator>Balaji, Bhashyam</creator><general>The Institution of Engineering and Technology</general><general>Inst Engineering Technology-Iet</general><scope>IDLOA</scope><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5570-0125</orcidid></search><sort><creationdate>202001</creationdate><title>Quantum two-mode squeezing radar and noise radar: covariance matrices for signal processing</title><author>Luong, David ; Balaji, Bhashyam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3770-1782728333be310d58cb64cfebf22220f029e68ea43d142a8ebdea0339437c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>continuous‐variable entanglement</topic><topic>covariance matrices</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>entangled microwave signals</topic><topic>entangled QTMS radar signals</topic><topic>fictional TMN radar</topic><topic>idealised TMN radar</topic><topic>matched filters</topic><topic>mathematical transformation</topic><topic>microwave frequency</topic><topic>microwave photonics</topic><topic>noise radar literature</topic><topic>optical information processing</topic><topic>optical radar</topic><topic>optical squeezing</topic><topic>prototype quantum radar</topic><topic>quantum entanglement</topic><topic>quantum two‐mode squeezing radar</topic><topic>radar signal processing</topic><topic>Research Article</topic><topic>Science &amp; Technology</topic><topic>signal processing</topic><topic>simpler radar system</topic><topic>standard noise radars</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>TMN radar signals</topic><topic>two‐mode noise radar</topic><topic>two‐mode squeezed vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luong, David</creatorcontrib><creatorcontrib>Balaji, Bhashyam</creatorcontrib><collection>IET Digital Library (Open Access)</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>IET radar, sonar &amp; navigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luong, David</au><au>Balaji, Bhashyam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum two-mode squeezing radar and noise radar: covariance matrices for signal processing</atitle><jtitle>IET radar, sonar &amp; navigation</jtitle><stitle>IET RADAR SONAR NAV</stitle><date>2020-01</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>97</spage><epage>104</epage><pages>97-104</pages><issn>1751-8784</issn><issn>1751-8792</issn><eissn>1751-8792</eissn><abstract>Recently, the authors have built and evaluated a prototype quantum radar in the laboratory which operates at microwave frequencies. This radar, which they call a quantum two-mode squeezing radar (QTMS radar), generates a pair of entangled microwave signals and transmits one of them through free space, using the other signal as a reference to perform matched filtering. The specific type of entanglement is called a two-mode squeezed vacuum, a type of continuous-variable entanglement between two frequencies. Motivated by the success of these experiments, they try to better understand the entangled QTMS radar signals in this study. They do so by comparing it to a simpler, more conventional radar system, which they call a two-mode noise radar (TMN radar). They also show how both types of radars are related to standard noise radars as described in the literature. They find that the signals for QTMS radar signals and TMN radar signals have the same mathematical form and that they are related to noise radar by a simple mathematical transformation. This shows that QTMS radar signals can be emulated by a fictional, idealised TMN radar and that it is possible to apply results from the noise radar literature to QTMS radar.</abstract><cop>HERTFORD</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-rsn.2019.0090</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5570-0125</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8784
ispartof IET radar, sonar & navigation, 2020-01, Vol.14 (1), p.97-104
issn 1751-8784
1751-8792
1751-8792
language eng
recordid cdi_webofscience_primary_000510750800012
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library All Journals
subjects continuous‐variable entanglement
covariance matrices
Engineering
Engineering, Electrical & Electronic
entangled microwave signals
entangled QTMS radar signals
fictional TMN radar
idealised TMN radar
matched filters
mathematical transformation
microwave frequency
microwave photonics
noise radar literature
optical information processing
optical radar
optical squeezing
prototype quantum radar
quantum entanglement
quantum two‐mode squeezing radar
radar signal processing
Research Article
Science & Technology
signal processing
simpler radar system
standard noise radars
Technology
Telecommunications
TMN radar signals
two‐mode noise radar
two‐mode squeezed vacuum
title Quantum two-mode squeezing radar and noise radar: covariance matrices for signal processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T05%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20two-mode%20squeezing%20radar%20and%20noise%20radar:%20covariance%20matrices%20for%20signal%20processing&rft.jtitle=IET%20radar,%20sonar%20&%20navigation&rft.au=Luong,%20David&rft.date=2020-01&rft.volume=14&rft.issue=1&rft.spage=97&rft.epage=104&rft.pages=97-104&rft.issn=1751-8784&rft.eissn=1751-8792&rft_id=info:doi/10.1049/iet-rsn.2019.0090&rft_dat=%3Cwiley_webof%3ERSN2BF01280%3C/wiley_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true