Spin transport in thick insulating antiferromagnetic films

Spin transport of magnonic excitations in uniaxial insulating antiferromagnets (AFs) is investigated. In linear response to spin biasing and a temperature gradient, the spin-transport properties of normal-metal-insulating antiferromagnet-normal-metal heterostructures are calculated. We focus on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-02, Vol.101 (5), p.1, Article 054404
Hauptverfasser: Troncoso, Roberto E., Bender, Scott A., Brataas, Arne, Duine, Rembert A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1
container_title Physical review. B
container_volume 101
creator Troncoso, Roberto E.
Bender, Scott A.
Brataas, Arne
Duine, Rembert A.
description Spin transport of magnonic excitations in uniaxial insulating antiferromagnets (AFs) is investigated. In linear response to spin biasing and a temperature gradient, the spin-transport properties of normal-metal-insulating antiferromagnet-normal-metal heterostructures are calculated. We focus on the thick-film regime, where the AF is thicker than the magnon equilibration length. This regime allows the use of a drift-diffusion approach, which is opposed to the thin-film limit considered by Bender et al. [Phys. Rev. Lett. 119, 056804 (2017)], where a stochastic approach is justified. We obtain the temperature and thickness dependence of the structural spin Seebeck coefficient S and magnon conductance g. In their evaluation, we incorporate effects from field-and temperature-dependent spin conserving intermagnon scattering processes. Furthermore, the interfacial spin transport is studied by evaluating the contact magnon conductances in a microscopic model that accounts for the sublattice symmetry breaking at the interface. We find that while intermagnon scattering does slightly suppress the spin Seebeck effect, transport is generally unaffected, with the relevant spin decay length being determined by non-magnon-conserving processes such as Gilbert damping. In addition, we find that while the structural spin conductance may be enhanced near the spin flip transition, it does not diverge due to spin impedance at the normal metal magnet interfaces.
doi_str_mv 10.1103/PhysRevB.101.054404
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000510745200005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374184451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-bdfd8d4b6882c51963e0032e82d413abb67d2c9b14f43a957026d8e7b2c350283</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMoOOZ-gTcFL6Xz5KNt4p0Wv2Cg-HFd2jTdMrekJqmyf29G1Wuv8ubwvOfAg9AphjnGQC-eVjv_rD6v5xjwHDLGgB2gCWG5SIXIxeFfzuAYzbxfAwDOQRQgJujypdcmCa42vrcuJPvPSsv3GPywqYM2y6Q2QXfKObutl0YFLZNOb7b-BB119car2c87RW-3N6_lfbp4vHsorxappIyGtGm7lresyTknMsMipwqAEsVJyzCtmyYvWiJFg1nHaC2yAkjeclU0RNIMCKdTdDbu7Z39GJQP1doOzsSTFaEFw5yxDEeKjpR01nunuqp3elu7XYWh2nuqfj3FAa5GT7F1Pra-VGM7L7UyUv01o6gMQ8EyAvsYaf5_utQh6rOmtIMJ9BtkAX0T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374184451</pqid></control><display><type>article</type><title>Spin transport in thick insulating antiferromagnetic films</title><source>American Physical Society Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Troncoso, Roberto E. ; Bender, Scott A. ; Brataas, Arne ; Duine, Rembert A.</creator><creatorcontrib>Troncoso, Roberto E. ; Bender, Scott A. ; Brataas, Arne ; Duine, Rembert A.</creatorcontrib><description>Spin transport of magnonic excitations in uniaxial insulating antiferromagnets (AFs) is investigated. In linear response to spin biasing and a temperature gradient, the spin-transport properties of normal-metal-insulating antiferromagnet-normal-metal heterostructures are calculated. We focus on the thick-film regime, where the AF is thicker than the magnon equilibration length. This regime allows the use of a drift-diffusion approach, which is opposed to the thin-film limit considered by Bender et al. [Phys. Rev. Lett. 119, 056804 (2017)], where a stochastic approach is justified. We obtain the temperature and thickness dependence of the structural spin Seebeck coefficient S and magnon conductance g. In their evaluation, we incorporate effects from field-and temperature-dependent spin conserving intermagnon scattering processes. Furthermore, the interfacial spin transport is studied by evaluating the contact magnon conductances in a microscopic model that accounts for the sublattice symmetry breaking at the interface. We find that while intermagnon scattering does slightly suppress the spin Seebeck effect, transport is generally unaffected, with the relevant spin decay length being determined by non-magnon-conserving processes such as Gilbert damping. In addition, we find that while the structural spin conductance may be enhanced near the spin flip transition, it does not diverge due to spin impedance at the normal metal magnet interfaces.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.054404</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Antiferromagnetism ; Broken symmetry ; Damping ; Heterostructures ; Magnons ; Materials Science ; Materials Science, Multidisciplinary ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Resistance ; Scattering ; Science &amp; Technology ; Seebeck effect ; Technology ; Temperature dependence ; Temperature gradients ; Thick films ; Thickness ; Thin films ; Transport properties</subject><ispartof>Physical review. B, 2020-02, Vol.101 (5), p.1, Article 054404</ispartof><rights>Copyright American Physical Society Feb 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>22</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000510745200005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c343t-bdfd8d4b6882c51963e0032e82d413abb67d2c9b14f43a957026d8e7b2c350283</citedby><cites>FETCH-LOGICAL-c343t-bdfd8d4b6882c51963e0032e82d413abb67d2c9b14f43a957026d8e7b2c350283</cites><orcidid>0000-0003-0867-6323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27928,27929,28252</link.rule.ids></links><search><creatorcontrib>Troncoso, Roberto E.</creatorcontrib><creatorcontrib>Bender, Scott A.</creatorcontrib><creatorcontrib>Brataas, Arne</creatorcontrib><creatorcontrib>Duine, Rembert A.</creatorcontrib><title>Spin transport in thick insulating antiferromagnetic films</title><title>Physical review. B</title><addtitle>PHYS REV B</addtitle><description>Spin transport of magnonic excitations in uniaxial insulating antiferromagnets (AFs) is investigated. In linear response to spin biasing and a temperature gradient, the spin-transport properties of normal-metal-insulating antiferromagnet-normal-metal heterostructures are calculated. We focus on the thick-film regime, where the AF is thicker than the magnon equilibration length. This regime allows the use of a drift-diffusion approach, which is opposed to the thin-film limit considered by Bender et al. [Phys. Rev. Lett. 119, 056804 (2017)], where a stochastic approach is justified. We obtain the temperature and thickness dependence of the structural spin Seebeck coefficient S and magnon conductance g. In their evaluation, we incorporate effects from field-and temperature-dependent spin conserving intermagnon scattering processes. Furthermore, the interfacial spin transport is studied by evaluating the contact magnon conductances in a microscopic model that accounts for the sublattice symmetry breaking at the interface. We find that while intermagnon scattering does slightly suppress the spin Seebeck effect, transport is generally unaffected, with the relevant spin decay length being determined by non-magnon-conserving processes such as Gilbert damping. In addition, we find that while the structural spin conductance may be enhanced near the spin flip transition, it does not diverge due to spin impedance at the normal metal magnet interfaces.</description><subject>Antiferromagnetism</subject><subject>Broken symmetry</subject><subject>Damping</subject><subject>Heterostructures</subject><subject>Magnons</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Resistance</subject><subject>Scattering</subject><subject>Science &amp; Technology</subject><subject>Seebeck effect</subject><subject>Technology</subject><subject>Temperature dependence</subject><subject>Temperature gradients</subject><subject>Thick films</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Transport properties</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkF1LwzAUhoMoOOZ-gTcFL6Xz5KNt4p0Wv2Cg-HFd2jTdMrekJqmyf29G1Wuv8ubwvOfAg9AphjnGQC-eVjv_rD6v5xjwHDLGgB2gCWG5SIXIxeFfzuAYzbxfAwDOQRQgJujypdcmCa42vrcuJPvPSsv3GPywqYM2y6Q2QXfKObutl0YFLZNOb7b-BB119car2c87RW-3N6_lfbp4vHsorxappIyGtGm7lresyTknMsMipwqAEsVJyzCtmyYvWiJFg1nHaC2yAkjeclU0RNIMCKdTdDbu7Z39GJQP1doOzsSTFaEFw5yxDEeKjpR01nunuqp3elu7XYWh2nuqfj3FAa5GT7F1Pra-VGM7L7UyUv01o6gMQ8EyAvsYaf5_utQh6rOmtIMJ9BtkAX0T</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Troncoso, Roberto E.</creator><creator>Bender, Scott A.</creator><creator>Brataas, Arne</creator><creator>Duine, Rembert A.</creator><general>Amer Physical Soc</general><general>American Physical Society</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0867-6323</orcidid></search><sort><creationdate>20200201</creationdate><title>Spin transport in thick insulating antiferromagnetic films</title><author>Troncoso, Roberto E. ; Bender, Scott A. ; Brataas, Arne ; Duine, Rembert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-bdfd8d4b6882c51963e0032e82d413abb67d2c9b14f43a957026d8e7b2c350283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiferromagnetism</topic><topic>Broken symmetry</topic><topic>Damping</topic><topic>Heterostructures</topic><topic>Magnons</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Resistance</topic><topic>Scattering</topic><topic>Science &amp; Technology</topic><topic>Seebeck effect</topic><topic>Technology</topic><topic>Temperature dependence</topic><topic>Temperature gradients</topic><topic>Thick films</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Troncoso, Roberto E.</creatorcontrib><creatorcontrib>Bender, Scott A.</creatorcontrib><creatorcontrib>Brataas, Arne</creatorcontrib><creatorcontrib>Duine, Rembert A.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Troncoso, Roberto E.</au><au>Bender, Scott A.</au><au>Brataas, Arne</au><au>Duine, Rembert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin transport in thick insulating antiferromagnetic films</atitle><jtitle>Physical review. B</jtitle><stitle>PHYS REV B</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>101</volume><issue>5</issue><spage>1</spage><pages>1-</pages><artnum>054404</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Spin transport of magnonic excitations in uniaxial insulating antiferromagnets (AFs) is investigated. In linear response to spin biasing and a temperature gradient, the spin-transport properties of normal-metal-insulating antiferromagnet-normal-metal heterostructures are calculated. We focus on the thick-film regime, where the AF is thicker than the magnon equilibration length. This regime allows the use of a drift-diffusion approach, which is opposed to the thin-film limit considered by Bender et al. [Phys. Rev. Lett. 119, 056804 (2017)], where a stochastic approach is justified. We obtain the temperature and thickness dependence of the structural spin Seebeck coefficient S and magnon conductance g. In their evaluation, we incorporate effects from field-and temperature-dependent spin conserving intermagnon scattering processes. Furthermore, the interfacial spin transport is studied by evaluating the contact magnon conductances in a microscopic model that accounts for the sublattice symmetry breaking at the interface. We find that while intermagnon scattering does slightly suppress the spin Seebeck effect, transport is generally unaffected, with the relevant spin decay length being determined by non-magnon-conserving processes such as Gilbert damping. In addition, we find that while the structural spin conductance may be enhanced near the spin flip transition, it does not diverge due to spin impedance at the normal metal magnet interfaces.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><doi>10.1103/PhysRevB.101.054404</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0867-6323</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-02, Vol.101 (5), p.1, Article 054404
issn 2469-9950
2469-9969
language eng
recordid cdi_webofscience_primary_000510745200005
source American Physical Society Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Antiferromagnetism
Broken symmetry
Damping
Heterostructures
Magnons
Materials Science
Materials Science, Multidisciplinary
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Resistance
Scattering
Science & Technology
Seebeck effect
Technology
Temperature dependence
Temperature gradients
Thick films
Thickness
Thin films
Transport properties
title Spin transport in thick insulating antiferromagnetic films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20transport%20in%20thick%20insulating%20antiferromagnetic%20films&rft.jtitle=Physical%20review.%20B&rft.au=Troncoso,%20Roberto%20E.&rft.date=2020-02-01&rft.volume=101&rft.issue=5&rft.spage=1&rft.pages=1-&rft.artnum=054404&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.054404&rft_dat=%3Cproquest_webof%3E2374184451%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374184451&rft_id=info:pmid/&rfr_iscdi=true