Toward Reliable and Scalable Internet of Vehicles: Performance Analysis and Resource Management
Reliable and scalable wireless transmissions for Internet of Vehicles (IoV) are technically challenging. Each vehicle, from driver-assisted to automated one, will generate a flood of information, up to thousands of times of that by a person. Vehicle density may change drastically over time and locat...
Gespeichert in:
Veröffentlicht in: | Proceedings of the IEEE 2020-02, Vol.108 (2), p.324-340 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 340 |
---|---|
container_issue | 2 |
container_start_page | 324 |
container_title | Proceedings of the IEEE |
container_volume | 108 |
creator | Ni, Yuanzhi Cai, Lin He, Jianping Vinel, Alexey Li, Yue Mosavat-Jahromi, Hamed Pan, Jianping |
description | Reliable and scalable wireless transmissions for Internet of Vehicles (IoV) are technically challenging. Each vehicle, from driver-assisted to automated one, will generate a flood of information, up to thousands of times of that by a person. Vehicle density may change drastically over time and location. Emergency messages and real-time cooperative control messages have stringent delay constraints while infotainment applications may tolerate a certain degree of latency. On a congested road, thousands of vehicles need to exchange information badly, only to find that service is limited due to the scarcity of wireless spectrum. Considering the service requirements of heterogeneous IoV applications, service guarantee relies on an in-depth understanding of network performance and innovations in wireless resource management leveraging the mobility of vehicles, which are addressed in this article. For single-hop transmissions, we study and compare the performance of vehicle-to-vehicle (V2V) beacon broadcasting using random access-based (IEEE 802.11p) and resource allocation-based (cellular vehicle-to-everything) protocols, and the enhancement strategies using distributed congestion control. For messages propagated in IoV using multihop V2V relay transmissions, the fundamental network connectivity property of 1-D and 2-D roads is given. To have a message delivered farther away in a sparse, disconnected V2V network, vehicles can carry and forward the message, with the help of infrastructure if possible. The optimal locations to deploy different types of roadside infrastructures, including storage-only devices and roadside units with Internet connections, are analyzed. |
doi_str_mv | 10.1109/JPROC.2019.2950349 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000510677500009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8938746</ieee_id><sourcerecordid>2348110042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-6a10fcdfe8e04b94a1fbbcca42d170e4e0a0be9d77206b412a8dfc0aae5fa8ee3</originalsourceid><addsrcrecordid>eNqNkE1v2zAMho1hA5a1_QPbxcCOgzPqw7a8W-B9dejQIu16FWiZalQ4Vio5CPrvpyRFe-1JFPG8BPlk2UcGc8ag-frnannZzjmwZs6bEoRs3mQzVpaq4Lys3mYzAKaKhrPmffYhxnsAEGUlZpm-8TsMfb6kwWE3UI5jn18bHA6f83GiMNKUe5vf0sqZgeK3_IqC9WGNo6F8MeLwGF085JYU_Tak7l8c8Y7WNE6n2TuLQ6Szp_ck-_fzx037u7i4_HXeLi4KIwSbigoZWNNbUgSyayQy23XGoOQ9q4EkAUJHTV_XHKpOMo6qtwYQqbSoiMRJ9uU4N-5os-30Jrg1hkft0env7nahfbjTq5WWTECZ6M9HehP8w5bipO_T4umUqLmQKikFyRPFj5QJPsZA9nkqA73Xrg_a9V67ftL-ssiOOm-jcZQ0PQeT95JBVddlqmBPq9fTrZtwcn5s_XacUvTTMeqIXiKqEaqWlfgPDyOg8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348110042</pqid></control><display><type>article</type><title>Toward Reliable and Scalable Internet of Vehicles: Performance Analysis and Resource Management</title><source>IEEE Electronic Library (IEL)</source><creator>Ni, Yuanzhi ; Cai, Lin ; He, Jianping ; Vinel, Alexey ; Li, Yue ; Mosavat-Jahromi, Hamed ; Pan, Jianping</creator><creatorcontrib>Ni, Yuanzhi ; Cai, Lin ; He, Jianping ; Vinel, Alexey ; Li, Yue ; Mosavat-Jahromi, Hamed ; Pan, Jianping</creatorcontrib><description>Reliable and scalable wireless transmissions for Internet of Vehicles (IoV) are technically challenging. Each vehicle, from driver-assisted to automated one, will generate a flood of information, up to thousands of times of that by a person. Vehicle density may change drastically over time and location. Emergency messages and real-time cooperative control messages have stringent delay constraints while infotainment applications may tolerate a certain degree of latency. On a congested road, thousands of vehicles need to exchange information badly, only to find that service is limited due to the scarcity of wireless spectrum. Considering the service requirements of heterogeneous IoV applications, service guarantee relies on an in-depth understanding of network performance and innovations in wireless resource management leveraging the mobility of vehicles, which are addressed in this article. For single-hop transmissions, we study and compare the performance of vehicle-to-vehicle (V2V) beacon broadcasting using random access-based (IEEE 802.11p) and resource allocation-based (cellular vehicle-to-everything) protocols, and the enhancement strategies using distributed congestion control. For messages propagated in IoV using multihop V2V relay transmissions, the fundamental network connectivity property of 1-D and 2-D roads is given. To have a message delivered farther away in a sparse, disconnected V2V network, vehicles can carry and forward the message, with the help of infrastructure if possible. The optimal locations to deploy different types of roadside infrastructures, including storage-only devices and roadside units with Internet connections, are analyzed.</description><identifier>ISSN: 0018-9219</identifier><identifier>ISSN: 1558-2256</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2019.2950349</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Broadcasting ; Cooperative control ; Delays ; Drivers ; Engineering ; Engineering, Electrical & Electronic ; Internet ; Internet of Vehicles ; Internet of Vehicles (IoV) ; Messages ; Protocol (computers) ; Random access ; Reliability ; Resource allocation ; Resource management ; Roadsides ; scalability ; Science & Technology ; Technology ; Transmissions (automotive) ; Vehicle-to-everything ; Vehicles ; Vehicular ad hoc networks ; Wireless communication ; wireless communications ; Wireless networks</subject><ispartof>Proceedings of the IEEE, 2020-02, Vol.108 (2), p.324-340</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>65</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000510677500009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c331t-6a10fcdfe8e04b94a1fbbcca42d170e4e0a0be9d77206b412a8dfc0aae5fa8ee3</citedby><cites>FETCH-LOGICAL-c331t-6a10fcdfe8e04b94a1fbbcca42d170e4e0a0be9d77206b412a8dfc0aae5fa8ee3</cites><orcidid>0000-0002-6253-7802 ; 0000-0003-4893-6847 ; 0000-0002-1093-4865 ; 0000-0001-9035-6278 ; 0000-0001-5330-4823 ; 0000-0003-4894-4134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8938746$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,782,786,798,887,27931,27932,28255,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8938746$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-41305$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Yuanzhi</creatorcontrib><creatorcontrib>Cai, Lin</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><creatorcontrib>Vinel, Alexey</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Mosavat-Jahromi, Hamed</creatorcontrib><creatorcontrib>Pan, Jianping</creatorcontrib><title>Toward Reliable and Scalable Internet of Vehicles: Performance Analysis and Resource Management</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><addtitle>P IEEE</addtitle><description>Reliable and scalable wireless transmissions for Internet of Vehicles (IoV) are technically challenging. Each vehicle, from driver-assisted to automated one, will generate a flood of information, up to thousands of times of that by a person. Vehicle density may change drastically over time and location. Emergency messages and real-time cooperative control messages have stringent delay constraints while infotainment applications may tolerate a certain degree of latency. On a congested road, thousands of vehicles need to exchange information badly, only to find that service is limited due to the scarcity of wireless spectrum. Considering the service requirements of heterogeneous IoV applications, service guarantee relies on an in-depth understanding of network performance and innovations in wireless resource management leveraging the mobility of vehicles, which are addressed in this article. For single-hop transmissions, we study and compare the performance of vehicle-to-vehicle (V2V) beacon broadcasting using random access-based (IEEE 802.11p) and resource allocation-based (cellular vehicle-to-everything) protocols, and the enhancement strategies using distributed congestion control. For messages propagated in IoV using multihop V2V relay transmissions, the fundamental network connectivity property of 1-D and 2-D roads is given. To have a message delivered farther away in a sparse, disconnected V2V network, vehicles can carry and forward the message, with the help of infrastructure if possible. The optimal locations to deploy different types of roadside infrastructures, including storage-only devices and roadside units with Internet connections, are analyzed.</description><subject>Broadcasting</subject><subject>Cooperative control</subject><subject>Delays</subject><subject>Drivers</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Internet</subject><subject>Internet of Vehicles</subject><subject>Internet of Vehicles (IoV)</subject><subject>Messages</subject><subject>Protocol (computers)</subject><subject>Random access</subject><subject>Reliability</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Roadsides</subject><subject>scalability</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Transmissions (automotive)</subject><subject>Vehicle-to-everything</subject><subject>Vehicles</subject><subject>Vehicular ad hoc networks</subject><subject>Wireless communication</subject><subject>wireless communications</subject><subject>Wireless networks</subject><issn>0018-9219</issn><issn>1558-2256</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkE1v2zAMho1hA5a1_QPbxcCOgzPqw7a8W-B9dejQIu16FWiZalQ4Vio5CPrvpyRFe-1JFPG8BPlk2UcGc8ag-frnannZzjmwZs6bEoRs3mQzVpaq4Lys3mYzAKaKhrPmffYhxnsAEGUlZpm-8TsMfb6kwWE3UI5jn18bHA6f83GiMNKUe5vf0sqZgeK3_IqC9WGNo6F8MeLwGF085JYU_Tak7l8c8Y7WNE6n2TuLQ6Szp_ck-_fzx037u7i4_HXeLi4KIwSbigoZWNNbUgSyayQy23XGoOQ9q4EkAUJHTV_XHKpOMo6qtwYQqbSoiMRJ9uU4N-5os-30Jrg1hkft0env7nahfbjTq5WWTECZ6M9HehP8w5bipO_T4umUqLmQKikFyRPFj5QJPsZA9nkqA73Xrg_a9V67ftL-ssiOOm-jcZQ0PQeT95JBVddlqmBPq9fTrZtwcn5s_XacUvTTMeqIXiKqEaqWlfgPDyOg8Q</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Ni, Yuanzhi</creator><creator>Cai, Lin</creator><creator>He, Jianping</creator><creator>Vinel, Alexey</creator><creator>Li, Yue</creator><creator>Mosavat-Jahromi, Hamed</creator><creator>Pan, Jianping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8Z</scope><orcidid>https://orcid.org/0000-0002-6253-7802</orcidid><orcidid>https://orcid.org/0000-0003-4893-6847</orcidid><orcidid>https://orcid.org/0000-0002-1093-4865</orcidid><orcidid>https://orcid.org/0000-0001-9035-6278</orcidid><orcidid>https://orcid.org/0000-0001-5330-4823</orcidid><orcidid>https://orcid.org/0000-0003-4894-4134</orcidid></search><sort><creationdate>20200201</creationdate><title>Toward Reliable and Scalable Internet of Vehicles: Performance Analysis and Resource Management</title><author>Ni, Yuanzhi ; Cai, Lin ; He, Jianping ; Vinel, Alexey ; Li, Yue ; Mosavat-Jahromi, Hamed ; Pan, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-6a10fcdfe8e04b94a1fbbcca42d170e4e0a0be9d77206b412a8dfc0aae5fa8ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Broadcasting</topic><topic>Cooperative control</topic><topic>Delays</topic><topic>Drivers</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Internet</topic><topic>Internet of Vehicles</topic><topic>Internet of Vehicles (IoV)</topic><topic>Messages</topic><topic>Protocol (computers)</topic><topic>Random access</topic><topic>Reliability</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Roadsides</topic><topic>scalability</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Transmissions (automotive)</topic><topic>Vehicle-to-everything</topic><topic>Vehicles</topic><topic>Vehicular ad hoc networks</topic><topic>Wireless communication</topic><topic>wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Yuanzhi</creatorcontrib><creatorcontrib>Cai, Lin</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><creatorcontrib>Vinel, Alexey</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Mosavat-Jahromi, Hamed</creatorcontrib><creatorcontrib>Pan, Jianping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Högskolan i Halmstad</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ni, Yuanzhi</au><au>Cai, Lin</au><au>He, Jianping</au><au>Vinel, Alexey</au><au>Li, Yue</au><au>Mosavat-Jahromi, Hamed</au><au>Pan, Jianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Reliable and Scalable Internet of Vehicles: Performance Analysis and Resource Management</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><stitle>P IEEE</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>108</volume><issue>2</issue><spage>324</spage><epage>340</epage><pages>324-340</pages><issn>0018-9219</issn><issn>1558-2256</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>Reliable and scalable wireless transmissions for Internet of Vehicles (IoV) are technically challenging. Each vehicle, from driver-assisted to automated one, will generate a flood of information, up to thousands of times of that by a person. Vehicle density may change drastically over time and location. Emergency messages and real-time cooperative control messages have stringent delay constraints while infotainment applications may tolerate a certain degree of latency. On a congested road, thousands of vehicles need to exchange information badly, only to find that service is limited due to the scarcity of wireless spectrum. Considering the service requirements of heterogeneous IoV applications, service guarantee relies on an in-depth understanding of network performance and innovations in wireless resource management leveraging the mobility of vehicles, which are addressed in this article. For single-hop transmissions, we study and compare the performance of vehicle-to-vehicle (V2V) beacon broadcasting using random access-based (IEEE 802.11p) and resource allocation-based (cellular vehicle-to-everything) protocols, and the enhancement strategies using distributed congestion control. For messages propagated in IoV using multihop V2V relay transmissions, the fundamental network connectivity property of 1-D and 2-D roads is given. To have a message delivered farther away in a sparse, disconnected V2V network, vehicles can carry and forward the message, with the help of infrastructure if possible. The optimal locations to deploy different types of roadside infrastructures, including storage-only devices and roadside units with Internet connections, are analyzed.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JPROC.2019.2950349</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6253-7802</orcidid><orcidid>https://orcid.org/0000-0003-4893-6847</orcidid><orcidid>https://orcid.org/0000-0002-1093-4865</orcidid><orcidid>https://orcid.org/0000-0001-9035-6278</orcidid><orcidid>https://orcid.org/0000-0001-5330-4823</orcidid><orcidid>https://orcid.org/0000-0003-4894-4134</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 2020-02, Vol.108 (2), p.324-340 |
issn | 0018-9219 1558-2256 1558-2256 |
language | eng |
recordid | cdi_webofscience_primary_000510677500009 |
source | IEEE Electronic Library (IEL) |
subjects | Broadcasting Cooperative control Delays Drivers Engineering Engineering, Electrical & Electronic Internet Internet of Vehicles Internet of Vehicles (IoV) Messages Protocol (computers) Random access Reliability Resource allocation Resource management Roadsides scalability Science & Technology Technology Transmissions (automotive) Vehicle-to-everything Vehicles Vehicular ad hoc networks Wireless communication wireless communications Wireless networks |
title | Toward Reliable and Scalable Internet of Vehicles: Performance Analysis and Resource Management |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Reliable%20and%20Scalable%20Internet%20of%20Vehicles:%20Performance%20Analysis%20and%20Resource%20Management&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Ni,%20Yuanzhi&rft.date=2020-02-01&rft.volume=108&rft.issue=2&rft.spage=324&rft.epage=340&rft.pages=324-340&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2019.2950349&rft_dat=%3Cproquest_RIE%3E2348110042%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348110042&rft_id=info:pmid/&rft_ieee_id=8938746&rfr_iscdi=true |