Toward Reliable and Scalable Internet of Vehicles: Performance Analysis and Resource Management

Reliable and scalable wireless transmissions for Internet of Vehicles (IoV) are technically challenging. Each vehicle, from driver-assisted to automated one, will generate a flood of information, up to thousands of times of that by a person. Vehicle density may change drastically over time and locat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2020-02, Vol.108 (2), p.324-340
Hauptverfasser: Ni, Yuanzhi, Cai, Lin, He, Jianping, Vinel, Alexey, Li, Yue, Mosavat-Jahromi, Hamed, Pan, Jianping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 340
container_issue 2
container_start_page 324
container_title Proceedings of the IEEE
container_volume 108
creator Ni, Yuanzhi
Cai, Lin
He, Jianping
Vinel, Alexey
Li, Yue
Mosavat-Jahromi, Hamed
Pan, Jianping
description Reliable and scalable wireless transmissions for Internet of Vehicles (IoV) are technically challenging. Each vehicle, from driver-assisted to automated one, will generate a flood of information, up to thousands of times of that by a person. Vehicle density may change drastically over time and location. Emergency messages and real-time cooperative control messages have stringent delay constraints while infotainment applications may tolerate a certain degree of latency. On a congested road, thousands of vehicles need to exchange information badly, only to find that service is limited due to the scarcity of wireless spectrum. Considering the service requirements of heterogeneous IoV applications, service guarantee relies on an in-depth understanding of network performance and innovations in wireless resource management leveraging the mobility of vehicles, which are addressed in this article. For single-hop transmissions, we study and compare the performance of vehicle-to-vehicle (V2V) beacon broadcasting using random access-based (IEEE 802.11p) and resource allocation-based (cellular vehicle-to-everything) protocols, and the enhancement strategies using distributed congestion control. For messages propagated in IoV using multihop V2V relay transmissions, the fundamental network connectivity property of 1-D and 2-D roads is given. To have a message delivered farther away in a sparse, disconnected V2V network, vehicles can carry and forward the message, with the help of infrastructure if possible. The optimal locations to deploy different types of roadside infrastructures, including storage-only devices and roadside units with Internet connections, are analyzed.
doi_str_mv 10.1109/JPROC.2019.2950349
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000510677500009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8938746</ieee_id><sourcerecordid>2348110042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-6a10fcdfe8e04b94a1fbbcca42d170e4e0a0be9d77206b412a8dfc0aae5fa8ee3</originalsourceid><addsrcrecordid>eNqNkE1v2zAMho1hA5a1_QPbxcCOgzPqw7a8W-B9dejQIu16FWiZalQ4Vio5CPrvpyRFe-1JFPG8BPlk2UcGc8ag-frnannZzjmwZs6bEoRs3mQzVpaq4Lys3mYzAKaKhrPmffYhxnsAEGUlZpm-8TsMfb6kwWE3UI5jn18bHA6f83GiMNKUe5vf0sqZgeK3_IqC9WGNo6F8MeLwGF085JYU_Tak7l8c8Y7WNE6n2TuLQ6Szp_ck-_fzx037u7i4_HXeLi4KIwSbigoZWNNbUgSyayQy23XGoOQ9q4EkAUJHTV_XHKpOMo6qtwYQqbSoiMRJ9uU4N-5os-30Jrg1hkft0env7nahfbjTq5WWTECZ6M9HehP8w5bipO_T4umUqLmQKikFyRPFj5QJPsZA9nkqA73Xrg_a9V67ftL-ssiOOm-jcZQ0PQeT95JBVddlqmBPq9fTrZtwcn5s_XacUvTTMeqIXiKqEaqWlfgPDyOg8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348110042</pqid></control><display><type>article</type><title>Toward Reliable and Scalable Internet of Vehicles: Performance Analysis and Resource Management</title><source>IEEE Electronic Library (IEL)</source><creator>Ni, Yuanzhi ; Cai, Lin ; He, Jianping ; Vinel, Alexey ; Li, Yue ; Mosavat-Jahromi, Hamed ; Pan, Jianping</creator><creatorcontrib>Ni, Yuanzhi ; Cai, Lin ; He, Jianping ; Vinel, Alexey ; Li, Yue ; Mosavat-Jahromi, Hamed ; Pan, Jianping</creatorcontrib><description>Reliable and scalable wireless transmissions for Internet of Vehicles (IoV) are technically challenging. Each vehicle, from driver-assisted to automated one, will generate a flood of information, up to thousands of times of that by a person. Vehicle density may change drastically over time and location. Emergency messages and real-time cooperative control messages have stringent delay constraints while infotainment applications may tolerate a certain degree of latency. On a congested road, thousands of vehicles need to exchange information badly, only to find that service is limited due to the scarcity of wireless spectrum. Considering the service requirements of heterogeneous IoV applications, service guarantee relies on an in-depth understanding of network performance and innovations in wireless resource management leveraging the mobility of vehicles, which are addressed in this article. For single-hop transmissions, we study and compare the performance of vehicle-to-vehicle (V2V) beacon broadcasting using random access-based (IEEE 802.11p) and resource allocation-based (cellular vehicle-to-everything) protocols, and the enhancement strategies using distributed congestion control. For messages propagated in IoV using multihop V2V relay transmissions, the fundamental network connectivity property of 1-D and 2-D roads is given. To have a message delivered farther away in a sparse, disconnected V2V network, vehicles can carry and forward the message, with the help of infrastructure if possible. The optimal locations to deploy different types of roadside infrastructures, including storage-only devices and roadside units with Internet connections, are analyzed.</description><identifier>ISSN: 0018-9219</identifier><identifier>ISSN: 1558-2256</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2019.2950349</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Broadcasting ; Cooperative control ; Delays ; Drivers ; Engineering ; Engineering, Electrical &amp; Electronic ; Internet ; Internet of Vehicles ; Internet of Vehicles (IoV) ; Messages ; Protocol (computers) ; Random access ; Reliability ; Resource allocation ; Resource management ; Roadsides ; scalability ; Science &amp; Technology ; Technology ; Transmissions (automotive) ; Vehicle-to-everything ; Vehicles ; Vehicular ad hoc networks ; Wireless communication ; wireless communications ; Wireless networks</subject><ispartof>Proceedings of the IEEE, 2020-02, Vol.108 (2), p.324-340</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>65</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000510677500009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c331t-6a10fcdfe8e04b94a1fbbcca42d170e4e0a0be9d77206b412a8dfc0aae5fa8ee3</citedby><cites>FETCH-LOGICAL-c331t-6a10fcdfe8e04b94a1fbbcca42d170e4e0a0be9d77206b412a8dfc0aae5fa8ee3</cites><orcidid>0000-0002-6253-7802 ; 0000-0003-4893-6847 ; 0000-0002-1093-4865 ; 0000-0001-9035-6278 ; 0000-0001-5330-4823 ; 0000-0003-4894-4134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8938746$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,782,786,798,887,27931,27932,28255,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8938746$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-41305$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Yuanzhi</creatorcontrib><creatorcontrib>Cai, Lin</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><creatorcontrib>Vinel, Alexey</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Mosavat-Jahromi, Hamed</creatorcontrib><creatorcontrib>Pan, Jianping</creatorcontrib><title>Toward Reliable and Scalable Internet of Vehicles: Performance Analysis and Resource Management</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><addtitle>P IEEE</addtitle><description>Reliable and scalable wireless transmissions for Internet of Vehicles (IoV) are technically challenging. Each vehicle, from driver-assisted to automated one, will generate a flood of information, up to thousands of times of that by a person. Vehicle density may change drastically over time and location. Emergency messages and real-time cooperative control messages have stringent delay constraints while infotainment applications may tolerate a certain degree of latency. On a congested road, thousands of vehicles need to exchange information badly, only to find that service is limited due to the scarcity of wireless spectrum. Considering the service requirements of heterogeneous IoV applications, service guarantee relies on an in-depth understanding of network performance and innovations in wireless resource management leveraging the mobility of vehicles, which are addressed in this article. For single-hop transmissions, we study and compare the performance of vehicle-to-vehicle (V2V) beacon broadcasting using random access-based (IEEE 802.11p) and resource allocation-based (cellular vehicle-to-everything) protocols, and the enhancement strategies using distributed congestion control. For messages propagated in IoV using multihop V2V relay transmissions, the fundamental network connectivity property of 1-D and 2-D roads is given. To have a message delivered farther away in a sparse, disconnected V2V network, vehicles can carry and forward the message, with the help of infrastructure if possible. The optimal locations to deploy different types of roadside infrastructures, including storage-only devices and roadside units with Internet connections, are analyzed.</description><subject>Broadcasting</subject><subject>Cooperative control</subject><subject>Delays</subject><subject>Drivers</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Internet</subject><subject>Internet of Vehicles</subject><subject>Internet of Vehicles (IoV)</subject><subject>Messages</subject><subject>Protocol (computers)</subject><subject>Random access</subject><subject>Reliability</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Roadsides</subject><subject>scalability</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Transmissions (automotive)</subject><subject>Vehicle-to-everything</subject><subject>Vehicles</subject><subject>Vehicular ad hoc networks</subject><subject>Wireless communication</subject><subject>wireless communications</subject><subject>Wireless networks</subject><issn>0018-9219</issn><issn>1558-2256</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkE1v2zAMho1hA5a1_QPbxcCOgzPqw7a8W-B9dejQIu16FWiZalQ4Vio5CPrvpyRFe-1JFPG8BPlk2UcGc8ag-frnannZzjmwZs6bEoRs3mQzVpaq4Lys3mYzAKaKhrPmffYhxnsAEGUlZpm-8TsMfb6kwWE3UI5jn18bHA6f83GiMNKUe5vf0sqZgeK3_IqC9WGNo6F8MeLwGF085JYU_Tak7l8c8Y7WNE6n2TuLQ6Szp_ck-_fzx037u7i4_HXeLi4KIwSbigoZWNNbUgSyayQy23XGoOQ9q4EkAUJHTV_XHKpOMo6qtwYQqbSoiMRJ9uU4N-5os-30Jrg1hkft0env7nahfbjTq5WWTECZ6M9HehP8w5bipO_T4umUqLmQKikFyRPFj5QJPsZA9nkqA73Xrg_a9V67ftL-ssiOOm-jcZQ0PQeT95JBVddlqmBPq9fTrZtwcn5s_XacUvTTMeqIXiKqEaqWlfgPDyOg8Q</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Ni, Yuanzhi</creator><creator>Cai, Lin</creator><creator>He, Jianping</creator><creator>Vinel, Alexey</creator><creator>Li, Yue</creator><creator>Mosavat-Jahromi, Hamed</creator><creator>Pan, Jianping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8Z</scope><orcidid>https://orcid.org/0000-0002-6253-7802</orcidid><orcidid>https://orcid.org/0000-0003-4893-6847</orcidid><orcidid>https://orcid.org/0000-0002-1093-4865</orcidid><orcidid>https://orcid.org/0000-0001-9035-6278</orcidid><orcidid>https://orcid.org/0000-0001-5330-4823</orcidid><orcidid>https://orcid.org/0000-0003-4894-4134</orcidid></search><sort><creationdate>20200201</creationdate><title>Toward Reliable and Scalable Internet of Vehicles: Performance Analysis and Resource Management</title><author>Ni, Yuanzhi ; Cai, Lin ; He, Jianping ; Vinel, Alexey ; Li, Yue ; Mosavat-Jahromi, Hamed ; Pan, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-6a10fcdfe8e04b94a1fbbcca42d170e4e0a0be9d77206b412a8dfc0aae5fa8ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Broadcasting</topic><topic>Cooperative control</topic><topic>Delays</topic><topic>Drivers</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Internet</topic><topic>Internet of Vehicles</topic><topic>Internet of Vehicles (IoV)</topic><topic>Messages</topic><topic>Protocol (computers)</topic><topic>Random access</topic><topic>Reliability</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Roadsides</topic><topic>scalability</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Transmissions (automotive)</topic><topic>Vehicle-to-everything</topic><topic>Vehicles</topic><topic>Vehicular ad hoc networks</topic><topic>Wireless communication</topic><topic>wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Yuanzhi</creatorcontrib><creatorcontrib>Cai, Lin</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><creatorcontrib>Vinel, Alexey</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Mosavat-Jahromi, Hamed</creatorcontrib><creatorcontrib>Pan, Jianping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Högskolan i Halmstad</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ni, Yuanzhi</au><au>Cai, Lin</au><au>He, Jianping</au><au>Vinel, Alexey</au><au>Li, Yue</au><au>Mosavat-Jahromi, Hamed</au><au>Pan, Jianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Reliable and Scalable Internet of Vehicles: Performance Analysis and Resource Management</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><stitle>P IEEE</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>108</volume><issue>2</issue><spage>324</spage><epage>340</epage><pages>324-340</pages><issn>0018-9219</issn><issn>1558-2256</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>Reliable and scalable wireless transmissions for Internet of Vehicles (IoV) are technically challenging. Each vehicle, from driver-assisted to automated one, will generate a flood of information, up to thousands of times of that by a person. Vehicle density may change drastically over time and location. Emergency messages and real-time cooperative control messages have stringent delay constraints while infotainment applications may tolerate a certain degree of latency. On a congested road, thousands of vehicles need to exchange information badly, only to find that service is limited due to the scarcity of wireless spectrum. Considering the service requirements of heterogeneous IoV applications, service guarantee relies on an in-depth understanding of network performance and innovations in wireless resource management leveraging the mobility of vehicles, which are addressed in this article. For single-hop transmissions, we study and compare the performance of vehicle-to-vehicle (V2V) beacon broadcasting using random access-based (IEEE 802.11p) and resource allocation-based (cellular vehicle-to-everything) protocols, and the enhancement strategies using distributed congestion control. For messages propagated in IoV using multihop V2V relay transmissions, the fundamental network connectivity property of 1-D and 2-D roads is given. To have a message delivered farther away in a sparse, disconnected V2V network, vehicles can carry and forward the message, with the help of infrastructure if possible. The optimal locations to deploy different types of roadside infrastructures, including storage-only devices and roadside units with Internet connections, are analyzed.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JPROC.2019.2950349</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6253-7802</orcidid><orcidid>https://orcid.org/0000-0003-4893-6847</orcidid><orcidid>https://orcid.org/0000-0002-1093-4865</orcidid><orcidid>https://orcid.org/0000-0001-9035-6278</orcidid><orcidid>https://orcid.org/0000-0001-5330-4823</orcidid><orcidid>https://orcid.org/0000-0003-4894-4134</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2020-02, Vol.108 (2), p.324-340
issn 0018-9219
1558-2256
1558-2256
language eng
recordid cdi_webofscience_primary_000510677500009
source IEEE Electronic Library (IEL)
subjects Broadcasting
Cooperative control
Delays
Drivers
Engineering
Engineering, Electrical & Electronic
Internet
Internet of Vehicles
Internet of Vehicles (IoV)
Messages
Protocol (computers)
Random access
Reliability
Resource allocation
Resource management
Roadsides
scalability
Science & Technology
Technology
Transmissions (automotive)
Vehicle-to-everything
Vehicles
Vehicular ad hoc networks
Wireless communication
wireless communications
Wireless networks
title Toward Reliable and Scalable Internet of Vehicles: Performance Analysis and Resource Management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Reliable%20and%20Scalable%20Internet%20of%20Vehicles:%20Performance%20Analysis%20and%20Resource%20Management&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Ni,%20Yuanzhi&rft.date=2020-02-01&rft.volume=108&rft.issue=2&rft.spage=324&rft.epage=340&rft.pages=324-340&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2019.2950349&rft_dat=%3Cproquest_RIE%3E2348110042%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348110042&rft_id=info:pmid/&rft_ieee_id=8938746&rfr_iscdi=true