Face recognition using patch manifold learning across plastic surgery from a single training exemplar per enrolled person

Although numerous methods have been developed for human face recognition, little investigation is focused on the human face recognition across plastic surgery and also single-exemplar face recognition. In this article, we present a new face recognition algorithm using patch manifold learning under p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2020-09, Vol.14 (6), p.1071-1077
Hauptverfasser: Ebadi, Mahlagha, Rashidy Kanan, Hamidreza, Kalantari, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1077
container_issue 6
container_start_page 1071
container_title Signal, image and video processing
container_volume 14
creator Ebadi, Mahlagha
Rashidy Kanan, Hamidreza
Kalantari, Mohammad
description Although numerous methods have been developed for human face recognition, little investigation is focused on the human face recognition across plastic surgery and also single-exemplar face recognition. In this article, we present a new face recognition algorithm using patch manifold learning under plastic surgery conditions when only a single training exemplar per enrolled person exists. In the presented method, a face image is divided into a collection of patches which have no overlapping that are considered as a manifold. Then, we formulate face recognition under plastic surgery conditions using a single exemplar of each person as a problem of manifold–manifold matching to maximize the margin of manifold patches. A complete experimental investigation is done using the database of plastic surgery, AR and also FERET face databases. Experimental results indicate the superiority of the presented algorithm for face recognition in single-sample databases.
doi_str_mv 10.1007/s11760-020-01642-2
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000508708300001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430112946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8d66beed2e73e6c8f9d7cefe7aa65c05bfff0f220d7e4da204350fc453700a353</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhosoKOoLuAq4lOpJ0iadpQzeQHCj65BJT8ZIJ6lJi87bm05Fd2Ig5ML3n-R8RXFG4ZICyKtEqRRQAsuTioqVbK84oo3gJZWU7v_sgR8Wpym9QR6cyUY0R8X2VhskEU1Yeze44MmYnF-TXg_mlWy0dzZ0LelQRz_daxNDSqTvdBqcIWmMa4xbYmPYEE2maIdkiNrtaPzETUYj6TES9DF0HbbTIQV_UhxY3SU8_V6Pi5fbm-flffn4dPewvH4sDaeLoWxaIVaILUPJUZjGLlpp0KLUWtQG6pW1Fixj0EqsWs2g4jVYU9VcAmhe8-PifK7bx_A-YhrUWxijz08qVnGglC0qkSk2U7v-IlrVR7fRcasoqMmymi2rbFntLCuWQ80c-sBVsMk49AZ_gtlyDY2Ehk_C6dINehK8DKMfcvTi_9FM85lOmfDZ-G8Pf3zvC1e8ou8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430112946</pqid></control><display><type>article</type><title>Face recognition using patch manifold learning across plastic surgery from a single training exemplar per enrolled person</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Ebadi, Mahlagha ; Rashidy Kanan, Hamidreza ; Kalantari, Mohammad</creator><creatorcontrib>Ebadi, Mahlagha ; Rashidy Kanan, Hamidreza ; Kalantari, Mohammad</creatorcontrib><description>Although numerous methods have been developed for human face recognition, little investigation is focused on the human face recognition across plastic surgery and also single-exemplar face recognition. In this article, we present a new face recognition algorithm using patch manifold learning under plastic surgery conditions when only a single training exemplar per enrolled person exists. In the presented method, a face image is divided into a collection of patches which have no overlapping that are considered as a manifold. Then, we formulate face recognition under plastic surgery conditions using a single exemplar of each person as a problem of manifold–manifold matching to maximize the margin of manifold patches. A complete experimental investigation is done using the database of plastic surgery, AR and also FERET face databases. Experimental results indicate the superiority of the presented algorithm for face recognition in single-sample databases.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-020-01642-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Computer Imaging ; Computer Science ; Engineering ; Engineering, Electrical &amp; Electronic ; Face recognition ; Facial recognition technology ; Image Processing and Computer Vision ; Imaging Science &amp; Photographic Technology ; Machine learning ; Manifolds (mathematics) ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Plastic surgery ; Science &amp; Technology ; Signal,Image and Speech Processing ; Technology ; Training ; Vision</subject><ispartof>Signal, image and video processing, 2020-09, Vol.14 (6), p.1071-1077</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000508708300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-8d66beed2e73e6c8f9d7cefe7aa65c05bfff0f220d7e4da204350fc453700a353</citedby><cites>FETCH-LOGICAL-c319t-8d66beed2e73e6c8f9d7cefe7aa65c05bfff0f220d7e4da204350fc453700a353</cites><orcidid>0000-0001-8789-8658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-020-01642-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-020-01642-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Ebadi, Mahlagha</creatorcontrib><creatorcontrib>Rashidy Kanan, Hamidreza</creatorcontrib><creatorcontrib>Kalantari, Mohammad</creatorcontrib><title>Face recognition using patch manifold learning across plastic surgery from a single training exemplar per enrolled person</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><addtitle>SIGNAL IMAGE VIDEO P</addtitle><description>Although numerous methods have been developed for human face recognition, little investigation is focused on the human face recognition across plastic surgery and also single-exemplar face recognition. In this article, we present a new face recognition algorithm using patch manifold learning under plastic surgery conditions when only a single training exemplar per enrolled person exists. In the presented method, a face image is divided into a collection of patches which have no overlapping that are considered as a manifold. Then, we formulate face recognition under plastic surgery conditions using a single exemplar of each person as a problem of manifold–manifold matching to maximize the margin of manifold patches. A complete experimental investigation is done using the database of plastic surgery, AR and also FERET face databases. Experimental results indicate the superiority of the presented algorithm for face recognition in single-sample databases.</description><subject>Algorithms</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Face recognition</subject><subject>Facial recognition technology</subject><subject>Image Processing and Computer Vision</subject><subject>Imaging Science &amp; Photographic Technology</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Plastic surgery</subject><subject>Science &amp; Technology</subject><subject>Signal,Image and Speech Processing</subject><subject>Technology</subject><subject>Training</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMtKxDAUhosoKOoLuAq4lOpJ0iadpQzeQHCj65BJT8ZIJ6lJi87bm05Fd2Ig5ML3n-R8RXFG4ZICyKtEqRRQAsuTioqVbK84oo3gJZWU7v_sgR8Wpym9QR6cyUY0R8X2VhskEU1Yeze44MmYnF-TXg_mlWy0dzZ0LelQRz_daxNDSqTvdBqcIWmMa4xbYmPYEE2maIdkiNrtaPzETUYj6TES9DF0HbbTIQV_UhxY3SU8_V6Pi5fbm-flffn4dPewvH4sDaeLoWxaIVaILUPJUZjGLlpp0KLUWtQG6pW1Fixj0EqsWs2g4jVYU9VcAmhe8-PifK7bx_A-YhrUWxijz08qVnGglC0qkSk2U7v-IlrVR7fRcasoqMmymi2rbFntLCuWQ80c-sBVsMk49AZ_gtlyDY2Ehk_C6dINehK8DKMfcvTi_9FM85lOmfDZ-G8Pf3zvC1e8ou8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ebadi, Mahlagha</creator><creator>Rashidy Kanan, Hamidreza</creator><creator>Kalantari, Mohammad</creator><general>Springer London</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8789-8658</orcidid></search><sort><creationdate>20200901</creationdate><title>Face recognition using patch manifold learning across plastic surgery from a single training exemplar per enrolled person</title><author>Ebadi, Mahlagha ; Rashidy Kanan, Hamidreza ; Kalantari, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8d66beed2e73e6c8f9d7cefe7aa65c05bfff0f220d7e4da204350fc453700a353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Face recognition</topic><topic>Facial recognition technology</topic><topic>Image Processing and Computer Vision</topic><topic>Imaging Science &amp; Photographic Technology</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Plastic surgery</topic><topic>Science &amp; Technology</topic><topic>Signal,Image and Speech Processing</topic><topic>Technology</topic><topic>Training</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebadi, Mahlagha</creatorcontrib><creatorcontrib>Rashidy Kanan, Hamidreza</creatorcontrib><creatorcontrib>Kalantari, Mohammad</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebadi, Mahlagha</au><au>Rashidy Kanan, Hamidreza</au><au>Kalantari, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face recognition using patch manifold learning across plastic surgery from a single training exemplar per enrolled person</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><stitle>SIGNAL IMAGE VIDEO P</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>14</volume><issue>6</issue><spage>1071</spage><epage>1077</epage><pages>1071-1077</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Although numerous methods have been developed for human face recognition, little investigation is focused on the human face recognition across plastic surgery and also single-exemplar face recognition. In this article, we present a new face recognition algorithm using patch manifold learning under plastic surgery conditions when only a single training exemplar per enrolled person exists. In the presented method, a face image is divided into a collection of patches which have no overlapping that are considered as a manifold. Then, we formulate face recognition under plastic surgery conditions using a single exemplar of each person as a problem of manifold–manifold matching to maximize the margin of manifold patches. A complete experimental investigation is done using the database of plastic surgery, AR and also FERET face databases. Experimental results indicate the superiority of the presented algorithm for face recognition in single-sample databases.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-020-01642-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8789-8658</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2020-09, Vol.14 (6), p.1071-1077
issn 1863-1703
1863-1711
language eng
recordid cdi_webofscience_primary_000508708300001CitationCount
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Algorithms
Computer Imaging
Computer Science
Engineering
Engineering, Electrical & Electronic
Face recognition
Facial recognition technology
Image Processing and Computer Vision
Imaging Science & Photographic Technology
Machine learning
Manifolds (mathematics)
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Plastic surgery
Science & Technology
Signal,Image and Speech Processing
Technology
Training
Vision
title Face recognition using patch manifold learning across plastic surgery from a single training exemplar per enrolled person
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A14%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20recognition%20using%20patch%20manifold%20learning%20across%20plastic%20surgery%20from%20a%20single%20training%20exemplar%20per%20enrolled%20person&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Ebadi,%20Mahlagha&rft.date=2020-09-01&rft.volume=14&rft.issue=6&rft.spage=1071&rft.epage=1077&rft.pages=1071-1077&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-020-01642-2&rft_dat=%3Cproquest_webof%3E2430112946%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430112946&rft_id=info:pmid/&rfr_iscdi=true