Face recognition using patch manifold learning across plastic surgery from a single training exemplar per enrolled person
Although numerous methods have been developed for human face recognition, little investigation is focused on the human face recognition across plastic surgery and also single-exemplar face recognition. In this article, we present a new face recognition algorithm using patch manifold learning under p...
Gespeichert in:
Veröffentlicht in: | Signal, image and video processing image and video processing, 2020-09, Vol.14 (6), p.1071-1077 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1077 |
---|---|
container_issue | 6 |
container_start_page | 1071 |
container_title | Signal, image and video processing |
container_volume | 14 |
creator | Ebadi, Mahlagha Rashidy Kanan, Hamidreza Kalantari, Mohammad |
description | Although numerous methods have been developed for human face recognition, little investigation is focused on the human face recognition across plastic surgery and also single-exemplar face recognition. In this article, we present a new face recognition algorithm using patch manifold learning under plastic surgery conditions when only a single training exemplar per enrolled person exists. In the presented method, a face image is divided into a collection of patches which have no overlapping that are considered as a manifold. Then, we formulate face recognition under plastic surgery conditions using a single exemplar of each person as a problem of manifold–manifold matching to maximize the margin of manifold patches. A complete experimental investigation is done using the database of plastic surgery, AR and also FERET face databases. Experimental results indicate the superiority of the presented algorithm for face recognition in single-sample databases. |
doi_str_mv | 10.1007/s11760-020-01642-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000508708300001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430112946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8d66beed2e73e6c8f9d7cefe7aa65c05bfff0f220d7e4da204350fc453700a353</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhosoKOoLuAq4lOpJ0iadpQzeQHCj65BJT8ZIJ6lJi87bm05Fd2Ig5ML3n-R8RXFG4ZICyKtEqRRQAsuTioqVbK84oo3gJZWU7v_sgR8Wpym9QR6cyUY0R8X2VhskEU1Yeze44MmYnF-TXg_mlWy0dzZ0LelQRz_daxNDSqTvdBqcIWmMa4xbYmPYEE2maIdkiNrtaPzETUYj6TES9DF0HbbTIQV_UhxY3SU8_V6Pi5fbm-flffn4dPewvH4sDaeLoWxaIVaILUPJUZjGLlpp0KLUWtQG6pW1Fixj0EqsWs2g4jVYU9VcAmhe8-PifK7bx_A-YhrUWxijz08qVnGglC0qkSk2U7v-IlrVR7fRcasoqMmymi2rbFntLCuWQ80c-sBVsMk49AZ_gtlyDY2Ehk_C6dINehK8DKMfcvTi_9FM85lOmfDZ-G8Pf3zvC1e8ou8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430112946</pqid></control><display><type>article</type><title>Face recognition using patch manifold learning across plastic surgery from a single training exemplar per enrolled person</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Ebadi, Mahlagha ; Rashidy Kanan, Hamidreza ; Kalantari, Mohammad</creator><creatorcontrib>Ebadi, Mahlagha ; Rashidy Kanan, Hamidreza ; Kalantari, Mohammad</creatorcontrib><description>Although numerous methods have been developed for human face recognition, little investigation is focused on the human face recognition across plastic surgery and also single-exemplar face recognition. In this article, we present a new face recognition algorithm using patch manifold learning under plastic surgery conditions when only a single training exemplar per enrolled person exists. In the presented method, a face image is divided into a collection of patches which have no overlapping that are considered as a manifold. Then, we formulate face recognition under plastic surgery conditions using a single exemplar of each person as a problem of manifold–manifold matching to maximize the margin of manifold patches. A complete experimental investigation is done using the database of plastic surgery, AR and also FERET face databases. Experimental results indicate the superiority of the presented algorithm for face recognition in single-sample databases.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-020-01642-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Computer Imaging ; Computer Science ; Engineering ; Engineering, Electrical & Electronic ; Face recognition ; Facial recognition technology ; Image Processing and Computer Vision ; Imaging Science & Photographic Technology ; Machine learning ; Manifolds (mathematics) ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Plastic surgery ; Science & Technology ; Signal,Image and Speech Processing ; Technology ; Training ; Vision</subject><ispartof>Signal, image and video processing, 2020-09, Vol.14 (6), p.1071-1077</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000508708300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-8d66beed2e73e6c8f9d7cefe7aa65c05bfff0f220d7e4da204350fc453700a353</citedby><cites>FETCH-LOGICAL-c319t-8d66beed2e73e6c8f9d7cefe7aa65c05bfff0f220d7e4da204350fc453700a353</cites><orcidid>0000-0001-8789-8658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-020-01642-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-020-01642-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Ebadi, Mahlagha</creatorcontrib><creatorcontrib>Rashidy Kanan, Hamidreza</creatorcontrib><creatorcontrib>Kalantari, Mohammad</creatorcontrib><title>Face recognition using patch manifold learning across plastic surgery from a single training exemplar per enrolled person</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><addtitle>SIGNAL IMAGE VIDEO P</addtitle><description>Although numerous methods have been developed for human face recognition, little investigation is focused on the human face recognition across plastic surgery and also single-exemplar face recognition. In this article, we present a new face recognition algorithm using patch manifold learning under plastic surgery conditions when only a single training exemplar per enrolled person exists. In the presented method, a face image is divided into a collection of patches which have no overlapping that are considered as a manifold. Then, we formulate face recognition under plastic surgery conditions using a single exemplar of each person as a problem of manifold–manifold matching to maximize the margin of manifold patches. A complete experimental investigation is done using the database of plastic surgery, AR and also FERET face databases. Experimental results indicate the superiority of the presented algorithm for face recognition in single-sample databases.</description><subject>Algorithms</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Face recognition</subject><subject>Facial recognition technology</subject><subject>Image Processing and Computer Vision</subject><subject>Imaging Science & Photographic Technology</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Plastic surgery</subject><subject>Science & Technology</subject><subject>Signal,Image and Speech Processing</subject><subject>Technology</subject><subject>Training</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMtKxDAUhosoKOoLuAq4lOpJ0iadpQzeQHCj65BJT8ZIJ6lJi87bm05Fd2Ig5ML3n-R8RXFG4ZICyKtEqRRQAsuTioqVbK84oo3gJZWU7v_sgR8Wpym9QR6cyUY0R8X2VhskEU1Yeze44MmYnF-TXg_mlWy0dzZ0LelQRz_daxNDSqTvdBqcIWmMa4xbYmPYEE2maIdkiNrtaPzETUYj6TES9DF0HbbTIQV_UhxY3SU8_V6Pi5fbm-flffn4dPewvH4sDaeLoWxaIVaILUPJUZjGLlpp0KLUWtQG6pW1Fixj0EqsWs2g4jVYU9VcAmhe8-PifK7bx_A-YhrUWxijz08qVnGglC0qkSk2U7v-IlrVR7fRcasoqMmymi2rbFntLCuWQ80c-sBVsMk49AZ_gtlyDY2Ehk_C6dINehK8DKMfcvTi_9FM85lOmfDZ-G8Pf3zvC1e8ou8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ebadi, Mahlagha</creator><creator>Rashidy Kanan, Hamidreza</creator><creator>Kalantari, Mohammad</creator><general>Springer London</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8789-8658</orcidid></search><sort><creationdate>20200901</creationdate><title>Face recognition using patch manifold learning across plastic surgery from a single training exemplar per enrolled person</title><author>Ebadi, Mahlagha ; Rashidy Kanan, Hamidreza ; Kalantari, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8d66beed2e73e6c8f9d7cefe7aa65c05bfff0f220d7e4da204350fc453700a353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Face recognition</topic><topic>Facial recognition technology</topic><topic>Image Processing and Computer Vision</topic><topic>Imaging Science & Photographic Technology</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Plastic surgery</topic><topic>Science & Technology</topic><topic>Signal,Image and Speech Processing</topic><topic>Technology</topic><topic>Training</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebadi, Mahlagha</creatorcontrib><creatorcontrib>Rashidy Kanan, Hamidreza</creatorcontrib><creatorcontrib>Kalantari, Mohammad</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebadi, Mahlagha</au><au>Rashidy Kanan, Hamidreza</au><au>Kalantari, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face recognition using patch manifold learning across plastic surgery from a single training exemplar per enrolled person</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><stitle>SIGNAL IMAGE VIDEO P</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>14</volume><issue>6</issue><spage>1071</spage><epage>1077</epage><pages>1071-1077</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Although numerous methods have been developed for human face recognition, little investigation is focused on the human face recognition across plastic surgery and also single-exemplar face recognition. In this article, we present a new face recognition algorithm using patch manifold learning under plastic surgery conditions when only a single training exemplar per enrolled person exists. In the presented method, a face image is divided into a collection of patches which have no overlapping that are considered as a manifold. Then, we formulate face recognition under plastic surgery conditions using a single exemplar of each person as a problem of manifold–manifold matching to maximize the margin of manifold patches. A complete experimental investigation is done using the database of plastic surgery, AR and also FERET face databases. Experimental results indicate the superiority of the presented algorithm for face recognition in single-sample databases.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-020-01642-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8789-8658</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2020-09, Vol.14 (6), p.1071-1077 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_webofscience_primary_000508708300001CitationCount |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Algorithms Computer Imaging Computer Science Engineering Engineering, Electrical & Electronic Face recognition Facial recognition technology Image Processing and Computer Vision Imaging Science & Photographic Technology Machine learning Manifolds (mathematics) Multimedia Information Systems Original Paper Pattern Recognition and Graphics Plastic surgery Science & Technology Signal,Image and Speech Processing Technology Training Vision |
title | Face recognition using patch manifold learning across plastic surgery from a single training exemplar per enrolled person |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A14%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20recognition%20using%20patch%20manifold%20learning%20across%20plastic%20surgery%20from%20a%20single%20training%20exemplar%20per%20enrolled%20person&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Ebadi,%20Mahlagha&rft.date=2020-09-01&rft.volume=14&rft.issue=6&rft.spage=1071&rft.epage=1077&rft.pages=1071-1077&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-020-01642-2&rft_dat=%3Cproquest_webof%3E2430112946%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430112946&rft_id=info:pmid/&rfr_iscdi=true |