Some Observations on the Smallest Adjacency Eigenvalue of a Graph

In this paper, we discuss various connections between the smallest eigenvalue of the adjacency matrix of a graph and its structure. There are several techniques for obtaining upper bounds on the smallest eigenvalue, and some of them are based on Rayleigh quotients, Cauchy interlacing using induced s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discussiones Mathematicae. Graph Theory 2020-05, Vol.40 (2), p.467-493
Hauptverfasser: Cioabă, Sebastian M., Elzinga, Randall J., Gregory, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 493
container_issue 2
container_start_page 467
container_title Discussiones Mathematicae. Graph Theory
container_volume 40
creator Cioabă, Sebastian M.
Elzinga, Randall J.
Gregory, David A.
description In this paper, we discuss various connections between the smallest eigenvalue of the adjacency matrix of a graph and its structure. There are several techniques for obtaining upper bounds on the smallest eigenvalue, and some of them are based on Rayleigh quotients, Cauchy interlacing using induced subgraphs, and Haemers interlacing with vertex partitions and quotient matrices. In this paper, we are interested in obtaining lower bounds for the smallest eigenvalue. Motivated by results on line graphs and generalized line graphs, we show how graph decompositions can be used to obtain such lower bounds.
doi_str_mv 10.7151/dmgt.2285
format Article
fullrecord <record><control><sourceid>walterdegruyter_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_769d82a1b0bd4d9184efe80175dfd2b8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_769d82a1b0bd4d9184efe80175dfd2b8</doaj_id><sourcerecordid>10_7151_dmgt_2285402467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-1ffe6d075336328b82ca4e90f0efb3c15ad25aec7993ec4b48d4babda79743283</originalsourceid><addsrcrecordid>eNplkM1LAzEQxYMoWNSD_0GuHlbztZvkWMSPgtCDeg6TZNJu2W4ku1X637u14sW5zDC894P3CLnm7Fbzmt_F7Wq8FcLUJ2QmmJFVbaw4JTMupKoks_acXA3Dhk1jjGK6mZH5a94iXfoByyeMbe4Hmns6rpG-bqHrcBjpPG4gYB_29KFdYf8J3Q5pThToU4GP9SU5S9ANePW7L8j748Pb_XP1snxa3M9fqiC1GSueEjaR6VrKRgrjjQig0LLEMHkZeA1R1IBBWysxKK9MVB58BG21mgzygiyO3Jhh4z5Ku4Wydxla9_PIZeWgjG3o0OnGRiOAe-ajipYbhQkN47qOKQp_YN0cWaHkYSiY_nicuUOV7lClO1Q5afVR-wXdiCXiquz20-E2eVf6KfF_j2JCNVp-A1Y_eUY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some Observations on the Smallest Adjacency Eigenvalue of a Graph</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cioabă, Sebastian M. ; Elzinga, Randall J. ; Gregory, David A.</creator><creatorcontrib>Cioabă, Sebastian M. ; Elzinga, Randall J. ; Gregory, David A.</creatorcontrib><description>In this paper, we discuss various connections between the smallest eigenvalue of the adjacency matrix of a graph and its structure. There are several techniques for obtaining upper bounds on the smallest eigenvalue, and some of them are based on Rayleigh quotients, Cauchy interlacing using induced subgraphs, and Haemers interlacing with vertex partitions and quotient matrices. In this paper, we are interested in obtaining lower bounds for the smallest eigenvalue. Motivated by results on line graphs and generalized line graphs, we show how graph decompositions can be used to obtain such lower bounds.</description><identifier>ISSN: 1234-3099</identifier><identifier>EISSN: 2083-5892</identifier><identifier>DOI: 10.7151/dmgt.2285</identifier><language>eng</language><publisher>Sciendo</publisher><subject>05C50 ; 05C75 ; 05C76 ; 05E30 ; 15A18 ; adjacency matrix ; claw-free graphs ; clique partition ; graph decomposition ; graph spectrum ; maximum cut ; smallest eigenvalue</subject><ispartof>Discussiones Mathematicae. Graph Theory, 2020-05, Vol.40 (2), p.467-493</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-1ffe6d075336328b82ca4e90f0efb3c15ad25aec7993ec4b48d4babda79743283</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Cioabă, Sebastian M.</creatorcontrib><creatorcontrib>Elzinga, Randall J.</creatorcontrib><creatorcontrib>Gregory, David A.</creatorcontrib><title>Some Observations on the Smallest Adjacency Eigenvalue of a Graph</title><title>Discussiones Mathematicae. Graph Theory</title><description>In this paper, we discuss various connections between the smallest eigenvalue of the adjacency matrix of a graph and its structure. There are several techniques for obtaining upper bounds on the smallest eigenvalue, and some of them are based on Rayleigh quotients, Cauchy interlacing using induced subgraphs, and Haemers interlacing with vertex partitions and quotient matrices. In this paper, we are interested in obtaining lower bounds for the smallest eigenvalue. Motivated by results on line graphs and generalized line graphs, we show how graph decompositions can be used to obtain such lower bounds.</description><subject>05C50</subject><subject>05C75</subject><subject>05C76</subject><subject>05E30</subject><subject>15A18</subject><subject>adjacency matrix</subject><subject>claw-free graphs</subject><subject>clique partition</subject><subject>graph decomposition</subject><subject>graph spectrum</subject><subject>maximum cut</subject><subject>smallest eigenvalue</subject><issn>1234-3099</issn><issn>2083-5892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkM1LAzEQxYMoWNSD_0GuHlbztZvkWMSPgtCDeg6TZNJu2W4ku1X637u14sW5zDC894P3CLnm7Fbzmt_F7Wq8FcLUJ2QmmJFVbaw4JTMupKoks_acXA3Dhk1jjGK6mZH5a94iXfoByyeMbe4Hmns6rpG-bqHrcBjpPG4gYB_29KFdYf8J3Q5pThToU4GP9SU5S9ANePW7L8j748Pb_XP1snxa3M9fqiC1GSueEjaR6VrKRgrjjQig0LLEMHkZeA1R1IBBWysxKK9MVB58BG21mgzygiyO3Jhh4z5Ku4Wydxla9_PIZeWgjG3o0OnGRiOAe-ajipYbhQkN47qOKQp_YN0cWaHkYSiY_nicuUOV7lClO1Q5afVR-wXdiCXiquz20-E2eVf6KfF_j2JCNVp-A1Y_eUY</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Cioabă, Sebastian M.</creator><creator>Elzinga, Randall J.</creator><creator>Gregory, David A.</creator><general>Sciendo</general><general>University of Zielona Góra</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20200501</creationdate><title>Some Observations on the Smallest Adjacency Eigenvalue of a Graph</title><author>Cioabă, Sebastian M. ; Elzinga, Randall J. ; Gregory, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-1ffe6d075336328b82ca4e90f0efb3c15ad25aec7993ec4b48d4babda79743283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>05C50</topic><topic>05C75</topic><topic>05C76</topic><topic>05E30</topic><topic>15A18</topic><topic>adjacency matrix</topic><topic>claw-free graphs</topic><topic>clique partition</topic><topic>graph decomposition</topic><topic>graph spectrum</topic><topic>maximum cut</topic><topic>smallest eigenvalue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cioabă, Sebastian M.</creatorcontrib><creatorcontrib>Elzinga, Randall J.</creatorcontrib><creatorcontrib>Gregory, David A.</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discussiones Mathematicae. Graph Theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cioabă, Sebastian M.</au><au>Elzinga, Randall J.</au><au>Gregory, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Observations on the Smallest Adjacency Eigenvalue of a Graph</atitle><jtitle>Discussiones Mathematicae. Graph Theory</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>40</volume><issue>2</issue><spage>467</spage><epage>493</epage><pages>467-493</pages><issn>1234-3099</issn><eissn>2083-5892</eissn><abstract>In this paper, we discuss various connections between the smallest eigenvalue of the adjacency matrix of a graph and its structure. There are several techniques for obtaining upper bounds on the smallest eigenvalue, and some of them are based on Rayleigh quotients, Cauchy interlacing using induced subgraphs, and Haemers interlacing with vertex partitions and quotient matrices. In this paper, we are interested in obtaining lower bounds for the smallest eigenvalue. Motivated by results on line graphs and generalized line graphs, we show how graph decompositions can be used to obtain such lower bounds.</abstract><pub>Sciendo</pub><doi>10.7151/dmgt.2285</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1234-3099
ispartof Discussiones Mathematicae. Graph Theory, 2020-05, Vol.40 (2), p.467-493
issn 1234-3099
2083-5892
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_769d82a1b0bd4d9184efe80175dfd2b8
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 05C50
05C75
05C76
05E30
15A18
adjacency matrix
claw-free graphs
clique partition
graph decomposition
graph spectrum
maximum cut
smallest eigenvalue
title Some Observations on the Smallest Adjacency Eigenvalue of a Graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Observations%20on%20the%20Smallest%20Adjacency%20Eigenvalue%20of%20a%20Graph&rft.jtitle=Discussiones%20Mathematicae.%20Graph%20Theory&rft.au=Cioab%C4%83,%20Sebastian%20M.&rft.date=2020-05-01&rft.volume=40&rft.issue=2&rft.spage=467&rft.epage=493&rft.pages=467-493&rft.issn=1234-3099&rft.eissn=2083-5892&rft_id=info:doi/10.7151/dmgt.2285&rft_dat=%3Cwalterdegruyter_doaj_%3E10_7151_dmgt_2285402467%3C/walterdegruyter_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_769d82a1b0bd4d9184efe80175dfd2b8&rfr_iscdi=true