Low-Frequency Desert Noise Intelligent Suppression in Seismic Data Based on Multiscale Geometric Analysis Convolutional Neural Network
Existing denoising algorithms often need to meet some premise assumptions and applicable conditions, such as the signal-to-noise ratio (SNR) cannot be too low, and the noise needs to obey a specific distribution (such as Gaussian distribution) and to satisfy some properties (such as stationarity). F...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2020-01, Vol.58 (1), p.650-665 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 665 |
---|---|
container_issue | 1 |
container_start_page | 650 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 58 |
creator | Zhao, Yuxing Li, Yue Yang, Baojun |
description | Existing denoising algorithms often need to meet some premise assumptions and applicable conditions, such as the signal-to-noise ratio (SNR) cannot be too low, and the noise needs to obey a specific distribution (such as Gaussian distribution) and to satisfy some properties (such as stationarity). For the desert noise that shares the same frequency band with the effective signal and has complex characteristics (nonlinear, nonstationary, and non-Gaussian), it is difficult to find a universally applicable method. In response to this problem, a multiscale geometric analysis (MGA) convolutional neural network (CNN) is proposed in this article. One of the most important features of the CNN is that it can extract data-rich intrinsic information from the training set without relying on a priori assumption. By introducing the CNN into the MGA, a new kind of denoising method can be created, which can achieve good results even under a low SNR. This article takes the nonsubsampled contourlet transform as an example to create a denoising network named NC-CNN for high-efficiency and intelligent denoising of desert seismic data. The processing results of synthetic seismic records and field seismic records prove that NC-CNN can effectively suppress the low-frequency noise (random noise and surface wave), and the effective signal almost has no energy loss. In addition, the reconstruction ability of the missing signals is also an advantage of this method. |
doi_str_mv | 10.1109/TGRS.2019.2938836 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000507307800048CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8847454</ieee_id><sourcerecordid>2332192686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-41b094343da34d45192072b9ef051e420a21fc0e5eb476129ebb7a6d0b8563f73</originalsourceid><addsrcrecordid>eNqNkMtu2zAQRYmgBeKm_YCgGwJZBnKHD0nUMlUaN4CbAnWyFih5VDCRRZdDxfAP9LtL10Gz7WoIzLkD3sPYuYC5EFB9ul_8WM0liGouK2WMKk7YTOS5yaDQ-g2bpU2RSVPJU_aO6BFA6FyUM_Z76XfZTcBfE47dnl8jYYj8zjtCfjtGHAb3E8fIV9N2G5DI-ZG7ka_Q0cZ1_NpGyz9bwjVPi2_TEB11dkC-QL_BGBJyNdphT4547cdnP0wxnbADv8Mp_B1x58PTe_a2twPhh5d5xh5uvtzXX7Pl98VtfbXMulQrZlq0UGml1doqvU4NKgmlbCvsIReoJVgp-g4wx1aXhZAVtm1pizW0Ji9UX6ozdnG8uw0-VabYPPoppP9QI5WS6V5hikSJI9UFTxSwb7bBbWzYNwKag-7moLs56G5edKeMOWZ22PqeOpd84r8cAORQKihNemlTu2gPHmo_jTFFL_8_muiPR9ohvlLG6FLnWv0Ba9eeFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332192686</pqid></control><display><type>article</type><title>Low-Frequency Desert Noise Intelligent Suppression in Seismic Data Based on Multiscale Geometric Analysis Convolutional Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Yuxing ; Li, Yue ; Yang, Baojun</creator><creatorcontrib>Zhao, Yuxing ; Li, Yue ; Yang, Baojun</creatorcontrib><description>Existing denoising algorithms often need to meet some premise assumptions and applicable conditions, such as the signal-to-noise ratio (SNR) cannot be too low, and the noise needs to obey a specific distribution (such as Gaussian distribution) and to satisfy some properties (such as stationarity). For the desert noise that shares the same frequency band with the effective signal and has complex characteristics (nonlinear, nonstationary, and non-Gaussian), it is difficult to find a universally applicable method. In response to this problem, a multiscale geometric analysis (MGA) convolutional neural network (CNN) is proposed in this article. One of the most important features of the CNN is that it can extract data-rich intrinsic information from the training set without relying on a priori assumption. By introducing the CNN into the MGA, a new kind of denoising method can be created, which can achieve good results even under a low SNR. This article takes the nonsubsampled contourlet transform as an example to create a denoising network named NC-CNN for high-efficiency and intelligent denoising of desert seismic data. The processing results of synthetic seismic records and field seismic records prove that NC-CNN can effectively suppress the low-frequency noise (random noise and surface wave), and the effective signal almost has no energy loss. In addition, the reconstruction ability of the missing signals is also an advantage of this method.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2019.2938836</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Convolutional neural network (CNN) ; Deserts ; Energy dissipation ; Energy loss ; Engineering ; Engineering, Electrical & Electronic ; Feature extraction ; Frequencies ; Gaussian distribution ; Geochemistry & Geophysics ; Imaging Science & Photographic Technology ; Information processing ; LF noise ; low-frequency noise suppression ; Multiscale analysis ; multiscale geometric analysis (MGA) ; Neural networks ; Noise ; Noise reduction ; Normal distribution ; Physical Sciences ; Random noise ; Records ; Remote Sensing ; Science & Technology ; Seismic data ; seismic exploration ; Seismograms ; Signal resolution ; Signal to noise ratio ; Surface water waves ; Surface waves ; Technology ; Training ; training set ; Transforms</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2020-01, Vol.58 (1), p.650-665</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>39</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000507307800048</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c293t-41b094343da34d45192072b9ef051e420a21fc0e5eb476129ebb7a6d0b8563f73</citedby><cites>FETCH-LOGICAL-c293t-41b094343da34d45192072b9ef051e420a21fc0e5eb476129ebb7a6d0b8563f73</cites><orcidid>0000-0002-5440-919X ; 0000-0001-5482-6244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8847454$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,28253,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8847454$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Yuxing</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Yang, Baojun</creatorcontrib><title>Low-Frequency Desert Noise Intelligent Suppression in Seismic Data Based on Multiscale Geometric Analysis Convolutional Neural Network</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><addtitle>IEEE T GEOSCI REMOTE</addtitle><description>Existing denoising algorithms often need to meet some premise assumptions and applicable conditions, such as the signal-to-noise ratio (SNR) cannot be too low, and the noise needs to obey a specific distribution (such as Gaussian distribution) and to satisfy some properties (such as stationarity). For the desert noise that shares the same frequency band with the effective signal and has complex characteristics (nonlinear, nonstationary, and non-Gaussian), it is difficult to find a universally applicable method. In response to this problem, a multiscale geometric analysis (MGA) convolutional neural network (CNN) is proposed in this article. One of the most important features of the CNN is that it can extract data-rich intrinsic information from the training set without relying on a priori assumption. By introducing the CNN into the MGA, a new kind of denoising method can be created, which can achieve good results even under a low SNR. This article takes the nonsubsampled contourlet transform as an example to create a denoising network named NC-CNN for high-efficiency and intelligent denoising of desert seismic data. The processing results of synthetic seismic records and field seismic records prove that NC-CNN can effectively suppress the low-frequency noise (random noise and surface wave), and the effective signal almost has no energy loss. In addition, the reconstruction ability of the missing signals is also an advantage of this method.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolutional neural network (CNN)</subject><subject>Deserts</subject><subject>Energy dissipation</subject><subject>Energy loss</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Feature extraction</subject><subject>Frequencies</subject><subject>Gaussian distribution</subject><subject>Geochemistry & Geophysics</subject><subject>Imaging Science & Photographic Technology</subject><subject>Information processing</subject><subject>LF noise</subject><subject>low-frequency noise suppression</subject><subject>Multiscale analysis</subject><subject>multiscale geometric analysis (MGA)</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Normal distribution</subject><subject>Physical Sciences</subject><subject>Random noise</subject><subject>Records</subject><subject>Remote Sensing</subject><subject>Science & Technology</subject><subject>Seismic data</subject><subject>seismic exploration</subject><subject>Seismograms</subject><subject>Signal resolution</subject><subject>Signal to noise ratio</subject><subject>Surface water waves</subject><subject>Surface waves</subject><subject>Technology</subject><subject>Training</subject><subject>training set</subject><subject>Transforms</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkMtu2zAQRYmgBeKm_YCgGwJZBnKHD0nUMlUaN4CbAnWyFih5VDCRRZdDxfAP9LtL10Gz7WoIzLkD3sPYuYC5EFB9ul_8WM0liGouK2WMKk7YTOS5yaDQ-g2bpU2RSVPJU_aO6BFA6FyUM_Z76XfZTcBfE47dnl8jYYj8zjtCfjtGHAb3E8fIV9N2G5DI-ZG7ka_Q0cZ1_NpGyz9bwjVPi2_TEB11dkC-QL_BGBJyNdphT4547cdnP0wxnbADv8Mp_B1x58PTe_a2twPhh5d5xh5uvtzXX7Pl98VtfbXMulQrZlq0UGml1doqvU4NKgmlbCvsIReoJVgp-g4wx1aXhZAVtm1pizW0Ji9UX6ozdnG8uw0-VabYPPoppP9QI5WS6V5hikSJI9UFTxSwb7bBbWzYNwKag-7moLs56G5edKeMOWZ22PqeOpd84r8cAORQKihNemlTu2gPHmo_jTFFL_8_muiPR9ohvlLG6FLnWv0Ba9eeFg</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Zhao, Yuxing</creator><creator>Li, Yue</creator><creator>Yang, Baojun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5440-919X</orcidid><orcidid>https://orcid.org/0000-0001-5482-6244</orcidid></search><sort><creationdate>202001</creationdate><title>Low-Frequency Desert Noise Intelligent Suppression in Seismic Data Based on Multiscale Geometric Analysis Convolutional Neural Network</title><author>Zhao, Yuxing ; Li, Yue ; Yang, Baojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-41b094343da34d45192072b9ef051e420a21fc0e5eb476129ebb7a6d0b8563f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolutional neural network (CNN)</topic><topic>Deserts</topic><topic>Energy dissipation</topic><topic>Energy loss</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Feature extraction</topic><topic>Frequencies</topic><topic>Gaussian distribution</topic><topic>Geochemistry & Geophysics</topic><topic>Imaging Science & Photographic Technology</topic><topic>Information processing</topic><topic>LF noise</topic><topic>low-frequency noise suppression</topic><topic>Multiscale analysis</topic><topic>multiscale geometric analysis (MGA)</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Normal distribution</topic><topic>Physical Sciences</topic><topic>Random noise</topic><topic>Records</topic><topic>Remote Sensing</topic><topic>Science & Technology</topic><topic>Seismic data</topic><topic>seismic exploration</topic><topic>Seismograms</topic><topic>Signal resolution</topic><topic>Signal to noise ratio</topic><topic>Surface water waves</topic><topic>Surface waves</topic><topic>Technology</topic><topic>Training</topic><topic>training set</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuxing</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Yang, Baojun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Yuxing</au><au>Li, Yue</au><au>Yang, Baojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Frequency Desert Noise Intelligent Suppression in Seismic Data Based on Multiscale Geometric Analysis Convolutional Neural Network</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><stitle>IEEE T GEOSCI REMOTE</stitle><date>2020-01</date><risdate>2020</risdate><volume>58</volume><issue>1</issue><spage>650</spage><epage>665</epage><pages>650-665</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Existing denoising algorithms often need to meet some premise assumptions and applicable conditions, such as the signal-to-noise ratio (SNR) cannot be too low, and the noise needs to obey a specific distribution (such as Gaussian distribution) and to satisfy some properties (such as stationarity). For the desert noise that shares the same frequency band with the effective signal and has complex characteristics (nonlinear, nonstationary, and non-Gaussian), it is difficult to find a universally applicable method. In response to this problem, a multiscale geometric analysis (MGA) convolutional neural network (CNN) is proposed in this article. One of the most important features of the CNN is that it can extract data-rich intrinsic information from the training set without relying on a priori assumption. By introducing the CNN into the MGA, a new kind of denoising method can be created, which can achieve good results even under a low SNR. This article takes the nonsubsampled contourlet transform as an example to create a denoising network named NC-CNN for high-efficiency and intelligent denoising of desert seismic data. The processing results of synthetic seismic records and field seismic records prove that NC-CNN can effectively suppress the low-frequency noise (random noise and surface wave), and the effective signal almost has no energy loss. In addition, the reconstruction ability of the missing signals is also an advantage of this method.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2019.2938836</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5440-919X</orcidid><orcidid>https://orcid.org/0000-0001-5482-6244</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2020-01, Vol.58 (1), p.650-665 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_webofscience_primary_000507307800048CitationCount |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Convolutional neural network (CNN) Deserts Energy dissipation Energy loss Engineering Engineering, Electrical & Electronic Feature extraction Frequencies Gaussian distribution Geochemistry & Geophysics Imaging Science & Photographic Technology Information processing LF noise low-frequency noise suppression Multiscale analysis multiscale geometric analysis (MGA) Neural networks Noise Noise reduction Normal distribution Physical Sciences Random noise Records Remote Sensing Science & Technology Seismic data seismic exploration Seismograms Signal resolution Signal to noise ratio Surface water waves Surface waves Technology Training training set Transforms |
title | Low-Frequency Desert Noise Intelligent Suppression in Seismic Data Based on Multiscale Geometric Analysis Convolutional Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Frequency%20Desert%20Noise%20Intelligent%20Suppression%20in%20Seismic%20Data%20Based%20on%20Multiscale%20Geometric%20Analysis%20Convolutional%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhao,%20Yuxing&rft.date=2020-01&rft.volume=58&rft.issue=1&rft.spage=650&rft.epage=665&rft.pages=650-665&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2019.2938836&rft_dat=%3Cproquest_RIE%3E2332192686%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332192686&rft_id=info:pmid/&rft_ieee_id=8847454&rfr_iscdi=true |