Low-Frequency Desert Noise Intelligent Suppression in Seismic Data Based on Multiscale Geometric Analysis Convolutional Neural Network

Existing denoising algorithms often need to meet some premise assumptions and applicable conditions, such as the signal-to-noise ratio (SNR) cannot be too low, and the noise needs to obey a specific distribution (such as Gaussian distribution) and to satisfy some properties (such as stationarity). F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2020-01, Vol.58 (1), p.650-665
Hauptverfasser: Zhao, Yuxing, Li, Yue, Yang, Baojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 665
container_issue 1
container_start_page 650
container_title IEEE transactions on geoscience and remote sensing
container_volume 58
creator Zhao, Yuxing
Li, Yue
Yang, Baojun
description Existing denoising algorithms often need to meet some premise assumptions and applicable conditions, such as the signal-to-noise ratio (SNR) cannot be too low, and the noise needs to obey a specific distribution (such as Gaussian distribution) and to satisfy some properties (such as stationarity). For the desert noise that shares the same frequency band with the effective signal and has complex characteristics (nonlinear, nonstationary, and non-Gaussian), it is difficult to find a universally applicable method. In response to this problem, a multiscale geometric analysis (MGA) convolutional neural network (CNN) is proposed in this article. One of the most important features of the CNN is that it can extract data-rich intrinsic information from the training set without relying on a priori assumption. By introducing the CNN into the MGA, a new kind of denoising method can be created, which can achieve good results even under a low SNR. This article takes the nonsubsampled contourlet transform as an example to create a denoising network named NC-CNN for high-efficiency and intelligent denoising of desert seismic data. The processing results of synthetic seismic records and field seismic records prove that NC-CNN can effectively suppress the low-frequency noise (random noise and surface wave), and the effective signal almost has no energy loss. In addition, the reconstruction ability of the missing signals is also an advantage of this method.
doi_str_mv 10.1109/TGRS.2019.2938836
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000507307800048CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8847454</ieee_id><sourcerecordid>2332192686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-41b094343da34d45192072b9ef051e420a21fc0e5eb476129ebb7a6d0b8563f73</originalsourceid><addsrcrecordid>eNqNkMtu2zAQRYmgBeKm_YCgGwJZBnKHD0nUMlUaN4CbAnWyFih5VDCRRZdDxfAP9LtL10Gz7WoIzLkD3sPYuYC5EFB9ul_8WM0liGouK2WMKk7YTOS5yaDQ-g2bpU2RSVPJU_aO6BFA6FyUM_Z76XfZTcBfE47dnl8jYYj8zjtCfjtGHAb3E8fIV9N2G5DI-ZG7ka_Q0cZ1_NpGyz9bwjVPi2_TEB11dkC-QL_BGBJyNdphT4547cdnP0wxnbADv8Mp_B1x58PTe_a2twPhh5d5xh5uvtzXX7Pl98VtfbXMulQrZlq0UGml1doqvU4NKgmlbCvsIReoJVgp-g4wx1aXhZAVtm1pizW0Ji9UX6ozdnG8uw0-VabYPPoppP9QI5WS6V5hikSJI9UFTxSwb7bBbWzYNwKag-7moLs56G5edKeMOWZ22PqeOpd84r8cAORQKihNemlTu2gPHmo_jTFFL_8_muiPR9ohvlLG6FLnWv0Ba9eeFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332192686</pqid></control><display><type>article</type><title>Low-Frequency Desert Noise Intelligent Suppression in Seismic Data Based on Multiscale Geometric Analysis Convolutional Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Yuxing ; Li, Yue ; Yang, Baojun</creator><creatorcontrib>Zhao, Yuxing ; Li, Yue ; Yang, Baojun</creatorcontrib><description>Existing denoising algorithms often need to meet some premise assumptions and applicable conditions, such as the signal-to-noise ratio (SNR) cannot be too low, and the noise needs to obey a specific distribution (such as Gaussian distribution) and to satisfy some properties (such as stationarity). For the desert noise that shares the same frequency band with the effective signal and has complex characteristics (nonlinear, nonstationary, and non-Gaussian), it is difficult to find a universally applicable method. In response to this problem, a multiscale geometric analysis (MGA) convolutional neural network (CNN) is proposed in this article. One of the most important features of the CNN is that it can extract data-rich intrinsic information from the training set without relying on a priori assumption. By introducing the CNN into the MGA, a new kind of denoising method can be created, which can achieve good results even under a low SNR. This article takes the nonsubsampled contourlet transform as an example to create a denoising network named NC-CNN for high-efficiency and intelligent denoising of desert seismic data. The processing results of synthetic seismic records and field seismic records prove that NC-CNN can effectively suppress the low-frequency noise (random noise and surface wave), and the effective signal almost has no energy loss. In addition, the reconstruction ability of the missing signals is also an advantage of this method.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2019.2938836</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Convolutional neural network (CNN) ; Deserts ; Energy dissipation ; Energy loss ; Engineering ; Engineering, Electrical &amp; Electronic ; Feature extraction ; Frequencies ; Gaussian distribution ; Geochemistry &amp; Geophysics ; Imaging Science &amp; Photographic Technology ; Information processing ; LF noise ; low-frequency noise suppression ; Multiscale analysis ; multiscale geometric analysis (MGA) ; Neural networks ; Noise ; Noise reduction ; Normal distribution ; Physical Sciences ; Random noise ; Records ; Remote Sensing ; Science &amp; Technology ; Seismic data ; seismic exploration ; Seismograms ; Signal resolution ; Signal to noise ratio ; Surface water waves ; Surface waves ; Technology ; Training ; training set ; Transforms</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2020-01, Vol.58 (1), p.650-665</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>39</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000507307800048</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c293t-41b094343da34d45192072b9ef051e420a21fc0e5eb476129ebb7a6d0b8563f73</citedby><cites>FETCH-LOGICAL-c293t-41b094343da34d45192072b9ef051e420a21fc0e5eb476129ebb7a6d0b8563f73</cites><orcidid>0000-0002-5440-919X ; 0000-0001-5482-6244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8847454$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,28253,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8847454$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Yuxing</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Yang, Baojun</creatorcontrib><title>Low-Frequency Desert Noise Intelligent Suppression in Seismic Data Based on Multiscale Geometric Analysis Convolutional Neural Network</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><addtitle>IEEE T GEOSCI REMOTE</addtitle><description>Existing denoising algorithms often need to meet some premise assumptions and applicable conditions, such as the signal-to-noise ratio (SNR) cannot be too low, and the noise needs to obey a specific distribution (such as Gaussian distribution) and to satisfy some properties (such as stationarity). For the desert noise that shares the same frequency band with the effective signal and has complex characteristics (nonlinear, nonstationary, and non-Gaussian), it is difficult to find a universally applicable method. In response to this problem, a multiscale geometric analysis (MGA) convolutional neural network (CNN) is proposed in this article. One of the most important features of the CNN is that it can extract data-rich intrinsic information from the training set without relying on a priori assumption. By introducing the CNN into the MGA, a new kind of denoising method can be created, which can achieve good results even under a low SNR. This article takes the nonsubsampled contourlet transform as an example to create a denoising network named NC-CNN for high-efficiency and intelligent denoising of desert seismic data. The processing results of synthetic seismic records and field seismic records prove that NC-CNN can effectively suppress the low-frequency noise (random noise and surface wave), and the effective signal almost has no energy loss. In addition, the reconstruction ability of the missing signals is also an advantage of this method.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolutional neural network (CNN)</subject><subject>Deserts</subject><subject>Energy dissipation</subject><subject>Energy loss</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Feature extraction</subject><subject>Frequencies</subject><subject>Gaussian distribution</subject><subject>Geochemistry &amp; Geophysics</subject><subject>Imaging Science &amp; Photographic Technology</subject><subject>Information processing</subject><subject>LF noise</subject><subject>low-frequency noise suppression</subject><subject>Multiscale analysis</subject><subject>multiscale geometric analysis (MGA)</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Normal distribution</subject><subject>Physical Sciences</subject><subject>Random noise</subject><subject>Records</subject><subject>Remote Sensing</subject><subject>Science &amp; Technology</subject><subject>Seismic data</subject><subject>seismic exploration</subject><subject>Seismograms</subject><subject>Signal resolution</subject><subject>Signal to noise ratio</subject><subject>Surface water waves</subject><subject>Surface waves</subject><subject>Technology</subject><subject>Training</subject><subject>training set</subject><subject>Transforms</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkMtu2zAQRYmgBeKm_YCgGwJZBnKHD0nUMlUaN4CbAnWyFih5VDCRRZdDxfAP9LtL10Gz7WoIzLkD3sPYuYC5EFB9ul_8WM0liGouK2WMKk7YTOS5yaDQ-g2bpU2RSVPJU_aO6BFA6FyUM_Z76XfZTcBfE47dnl8jYYj8zjtCfjtGHAb3E8fIV9N2G5DI-ZG7ka_Q0cZ1_NpGyz9bwjVPi2_TEB11dkC-QL_BGBJyNdphT4547cdnP0wxnbADv8Mp_B1x58PTe_a2twPhh5d5xh5uvtzXX7Pl98VtfbXMulQrZlq0UGml1doqvU4NKgmlbCvsIReoJVgp-g4wx1aXhZAVtm1pizW0Ji9UX6ozdnG8uw0-VabYPPoppP9QI5WS6V5hikSJI9UFTxSwb7bBbWzYNwKag-7moLs56G5edKeMOWZ22PqeOpd84r8cAORQKihNemlTu2gPHmo_jTFFL_8_muiPR9ohvlLG6FLnWv0Ba9eeFg</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Zhao, Yuxing</creator><creator>Li, Yue</creator><creator>Yang, Baojun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5440-919X</orcidid><orcidid>https://orcid.org/0000-0001-5482-6244</orcidid></search><sort><creationdate>202001</creationdate><title>Low-Frequency Desert Noise Intelligent Suppression in Seismic Data Based on Multiscale Geometric Analysis Convolutional Neural Network</title><author>Zhao, Yuxing ; Li, Yue ; Yang, Baojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-41b094343da34d45192072b9ef051e420a21fc0e5eb476129ebb7a6d0b8563f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolutional neural network (CNN)</topic><topic>Deserts</topic><topic>Energy dissipation</topic><topic>Energy loss</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Feature extraction</topic><topic>Frequencies</topic><topic>Gaussian distribution</topic><topic>Geochemistry &amp; Geophysics</topic><topic>Imaging Science &amp; Photographic Technology</topic><topic>Information processing</topic><topic>LF noise</topic><topic>low-frequency noise suppression</topic><topic>Multiscale analysis</topic><topic>multiscale geometric analysis (MGA)</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Normal distribution</topic><topic>Physical Sciences</topic><topic>Random noise</topic><topic>Records</topic><topic>Remote Sensing</topic><topic>Science &amp; Technology</topic><topic>Seismic data</topic><topic>seismic exploration</topic><topic>Seismograms</topic><topic>Signal resolution</topic><topic>Signal to noise ratio</topic><topic>Surface water waves</topic><topic>Surface waves</topic><topic>Technology</topic><topic>Training</topic><topic>training set</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuxing</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Yang, Baojun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Yuxing</au><au>Li, Yue</au><au>Yang, Baojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Frequency Desert Noise Intelligent Suppression in Seismic Data Based on Multiscale Geometric Analysis Convolutional Neural Network</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><stitle>IEEE T GEOSCI REMOTE</stitle><date>2020-01</date><risdate>2020</risdate><volume>58</volume><issue>1</issue><spage>650</spage><epage>665</epage><pages>650-665</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Existing denoising algorithms often need to meet some premise assumptions and applicable conditions, such as the signal-to-noise ratio (SNR) cannot be too low, and the noise needs to obey a specific distribution (such as Gaussian distribution) and to satisfy some properties (such as stationarity). For the desert noise that shares the same frequency band with the effective signal and has complex characteristics (nonlinear, nonstationary, and non-Gaussian), it is difficult to find a universally applicable method. In response to this problem, a multiscale geometric analysis (MGA) convolutional neural network (CNN) is proposed in this article. One of the most important features of the CNN is that it can extract data-rich intrinsic information from the training set without relying on a priori assumption. By introducing the CNN into the MGA, a new kind of denoising method can be created, which can achieve good results even under a low SNR. This article takes the nonsubsampled contourlet transform as an example to create a denoising network named NC-CNN for high-efficiency and intelligent denoising of desert seismic data. The processing results of synthetic seismic records and field seismic records prove that NC-CNN can effectively suppress the low-frequency noise (random noise and surface wave), and the effective signal almost has no energy loss. In addition, the reconstruction ability of the missing signals is also an advantage of this method.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2019.2938836</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5440-919X</orcidid><orcidid>https://orcid.org/0000-0001-5482-6244</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2020-01, Vol.58 (1), p.650-665
issn 0196-2892
1558-0644
language eng
recordid cdi_webofscience_primary_000507307800048CitationCount
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Convolutional neural network (CNN)
Deserts
Energy dissipation
Energy loss
Engineering
Engineering, Electrical & Electronic
Feature extraction
Frequencies
Gaussian distribution
Geochemistry & Geophysics
Imaging Science & Photographic Technology
Information processing
LF noise
low-frequency noise suppression
Multiscale analysis
multiscale geometric analysis (MGA)
Neural networks
Noise
Noise reduction
Normal distribution
Physical Sciences
Random noise
Records
Remote Sensing
Science & Technology
Seismic data
seismic exploration
Seismograms
Signal resolution
Signal to noise ratio
Surface water waves
Surface waves
Technology
Training
training set
Transforms
title Low-Frequency Desert Noise Intelligent Suppression in Seismic Data Based on Multiscale Geometric Analysis Convolutional Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Frequency%20Desert%20Noise%20Intelligent%20Suppression%20in%20Seismic%20Data%20Based%20on%20Multiscale%20Geometric%20Analysis%20Convolutional%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhao,%20Yuxing&rft.date=2020-01&rft.volume=58&rft.issue=1&rft.spage=650&rft.epage=665&rft.pages=650-665&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2019.2938836&rft_dat=%3Cproquest_RIE%3E2332192686%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332192686&rft_id=info:pmid/&rft_ieee_id=8847454&rfr_iscdi=true