Attack Detection and Approximation in Nonlinear Networked Control Systems Using Neural Networks

In networked control systems (NCS), a certain class of attacks on the communication network is known to raise traffic flows causing delays and packet losses to increase. This paper presents a novel neural network (NN)-based attack detection and estimation scheme that captures the abnormal traffic fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2020-01, Vol.31 (1), p.235-245
Hauptverfasser: Niu, Haifeng, Bhowmick, Chandreyee, Jagannathan, Sarangapani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue 1
container_start_page 235
container_title IEEE transaction on neural networks and learning systems
container_volume 31
creator Niu, Haifeng
Bhowmick, Chandreyee
Jagannathan, Sarangapani
description In networked control systems (NCS), a certain class of attacks on the communication network is known to raise traffic flows causing delays and packet losses to increase. This paper presents a novel neural network (NN)-based attack detection and estimation scheme that captures the abnormal traffic flow due to a class of attacks on the communication links within the feedback loop of an NCS. By modeling the unknown network flow as a nonlinear function at the bottleneck node and using a NN observer, the network attack detection residual is defined and utilized to determine the onset of an attack in the communication network when the residual exceeds a predefined threshold. Upon detection, another NN is used to estimate the flow injected by the attack. For the physical system, we develop an attack detection scheme by using an adaptive dynamic programming-based optimal event-triggered NN controller in the presence of network delays and packet losses. Attacks on the network as well as on the sensors of the physical system can be detected and estimated with the proposed scheme. The simulation results confirm theoretical conclusions.
doi_str_mv 10.1109/TNNLS.2019.2900430
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000506609000020CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8668694</ieee_id><sourcerecordid>2333733272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-b6a71e06f402ac121cbef444004a3c178b6822d9b2f0827b29dd0bbedbcf3b783</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhk1paEKaP9BCMfRSKLuRRrYsHRenX7BsDkmgNyHJ4-LEK20lmTT_vtqPbKGn6CIhPe8wmqco3lEyp5TIy9vVankzB0LlHCQhFSOvijOgHGbAhHh9PDc_T4uLGO9JXpzUvJJvilNGhASo4axQi5S0fSivMKFNg3eldl252GyC_zOs9e5mcOXKu3FwqEO5wvTowwN2ZetdCn4sb55iwnUs7-LgfuX3KejxGYtvi5NejxEvDvt5cff1y237fba8_vajXSxnlsk6zQzXDUXC-4qAthSoNdhXVZU_ppmljTBcAHTSQE8ENAZk1xFjsDO2Z6YR7Lz4tK-bG_89YUxqPUSL46gd-ikqoLKqhaSEZvTjf-i9n4LL3SlgjDWMQQOZgj1lg48xYK82IQ8kPClK1NaA2hlQWwPqYCCHPhxKT2aN3THyPO8MfN4Dj2h8H-2AzuIRy4pqwjmRW1mwLSdeTrdD2ulq_eRSjr7fRwfEfxHBueCyYn8B2u6rDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333733272</pqid></control><display><type>article</type><title>Attack Detection and Approximation in Nonlinear Networked Control Systems Using Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Niu, Haifeng ; Bhowmick, Chandreyee ; Jagannathan, Sarangapani</creator><creatorcontrib>Niu, Haifeng ; Bhowmick, Chandreyee ; Jagannathan, Sarangapani</creatorcontrib><description>In networked control systems (NCS), a certain class of attacks on the communication network is known to raise traffic flows causing delays and packet losses to increase. This paper presents a novel neural network (NN)-based attack detection and estimation scheme that captures the abnormal traffic flow due to a class of attacks on the communication links within the feedback loop of an NCS. By modeling the unknown network flow as a nonlinear function at the bottleneck node and using a NN observer, the network attack detection residual is defined and utilized to determine the onset of an attack in the communication network when the residual exceeds a predefined threshold. Upon detection, another NN is used to estimate the flow injected by the attack. For the physical system, we develop an attack detection scheme by using an adaptive dynamic programming-based optimal event-triggered NN controller in the presence of network delays and packet losses. Attacks on the network as well as on the sensors of the physical system can be detected and estimated with the proposed scheme. The simulation results confirm theoretical conclusions.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2019.2900430</identifier><identifier>PMID: 30892252</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Actor-critic network ; Adaptive systems ; Artificial neural networks ; attack detection ; attack estimation ; Communication ; Communication networks ; Communications networks ; Computer Science ; Computer Science, Artificial Intelligence ; Computer Science, Hardware &amp; Architecture ; Computer Science, Theory &amp; Methods ; Computer simulation ; Control systems ; Control theory ; Delays ; Dynamic programming ; Engineering ; Engineering, Electrical &amp; Electronic ; event-triggered control ; Feedback loops ; flow control ; networked control system (NCS) ; neural network (NN) ; Neural networks ; Nonlinear control ; Nonlinear systems ; Observers ; optimal control ; Science &amp; Technology ; Sensors ; Technology ; Traffic congestion ; Traffic delay ; Traffic flow</subject><ispartof>IEEE transaction on neural networks and learning systems, 2020-01, Vol.31 (1), p.235-245</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>30</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000506609000020</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c395t-b6a71e06f402ac121cbef444004a3c178b6822d9b2f0827b29dd0bbedbcf3b783</citedby><cites>FETCH-LOGICAL-c395t-b6a71e06f402ac121cbef444004a3c178b6822d9b2f0827b29dd0bbedbcf3b783</cites><orcidid>0000-0002-2310-3737 ; 0000-0002-2261-8288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8668694$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,28255,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8668694$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30892252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Haifeng</creatorcontrib><creatorcontrib>Bhowmick, Chandreyee</creatorcontrib><creatorcontrib>Jagannathan, Sarangapani</creatorcontrib><title>Attack Detection and Approximation in Nonlinear Networked Control Systems Using Neural Networks</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE T NEUR NET LEAR</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In networked control systems (NCS), a certain class of attacks on the communication network is known to raise traffic flows causing delays and packet losses to increase. This paper presents a novel neural network (NN)-based attack detection and estimation scheme that captures the abnormal traffic flow due to a class of attacks on the communication links within the feedback loop of an NCS. By modeling the unknown network flow as a nonlinear function at the bottleneck node and using a NN observer, the network attack detection residual is defined and utilized to determine the onset of an attack in the communication network when the residual exceeds a predefined threshold. Upon detection, another NN is used to estimate the flow injected by the attack. For the physical system, we develop an attack detection scheme by using an adaptive dynamic programming-based optimal event-triggered NN controller in the presence of network delays and packet losses. Attacks on the network as well as on the sensors of the physical system can be detected and estimated with the proposed scheme. The simulation results confirm theoretical conclusions.</description><subject>Actor-critic network</subject><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>attack detection</subject><subject>attack estimation</subject><subject>Communication</subject><subject>Communication networks</subject><subject>Communications networks</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Computer Science, Hardware &amp; Architecture</subject><subject>Computer Science, Theory &amp; Methods</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Delays</subject><subject>Dynamic programming</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>event-triggered control</subject><subject>Feedback loops</subject><subject>flow control</subject><subject>networked control system (NCS)</subject><subject>neural network (NN)</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Observers</subject><subject>optimal control</subject><subject>Science &amp; Technology</subject><subject>Sensors</subject><subject>Technology</subject><subject>Traffic congestion</subject><subject>Traffic delay</subject><subject>Traffic flow</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkU1r3DAQhk1paEKaP9BCMfRSKLuRRrYsHRenX7BsDkmgNyHJ4-LEK20lmTT_vtqPbKGn6CIhPe8wmqco3lEyp5TIy9vVankzB0LlHCQhFSOvijOgHGbAhHh9PDc_T4uLGO9JXpzUvJJvilNGhASo4axQi5S0fSivMKFNg3eldl252GyC_zOs9e5mcOXKu3FwqEO5wvTowwN2ZetdCn4sb55iwnUs7-LgfuX3KejxGYtvi5NejxEvDvt5cff1y237fba8_vajXSxnlsk6zQzXDUXC-4qAthSoNdhXVZU_ppmljTBcAHTSQE8ENAZk1xFjsDO2Z6YR7Lz4tK-bG_89YUxqPUSL46gd-ikqoLKqhaSEZvTjf-i9n4LL3SlgjDWMQQOZgj1lg48xYK82IQ8kPClK1NaA2hlQWwPqYCCHPhxKT2aN3THyPO8MfN4Dj2h8H-2AzuIRy4pqwjmRW1mwLSdeTrdD2ulq_eRSjr7fRwfEfxHBueCyYn8B2u6rDQ</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Niu, Haifeng</creator><creator>Bhowmick, Chandreyee</creator><creator>Jagannathan, Sarangapani</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2310-3737</orcidid><orcidid>https://orcid.org/0000-0002-2261-8288</orcidid></search><sort><creationdate>202001</creationdate><title>Attack Detection and Approximation in Nonlinear Networked Control Systems Using Neural Networks</title><author>Niu, Haifeng ; Bhowmick, Chandreyee ; Jagannathan, Sarangapani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-b6a71e06f402ac121cbef444004a3c178b6822d9b2f0827b29dd0bbedbcf3b783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actor-critic network</topic><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>attack detection</topic><topic>attack estimation</topic><topic>Communication</topic><topic>Communication networks</topic><topic>Communications networks</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Computer Science, Hardware &amp; Architecture</topic><topic>Computer Science, Theory &amp; Methods</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Delays</topic><topic>Dynamic programming</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>event-triggered control</topic><topic>Feedback loops</topic><topic>flow control</topic><topic>networked control system (NCS)</topic><topic>neural network (NN)</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Observers</topic><topic>optimal control</topic><topic>Science &amp; Technology</topic><topic>Sensors</topic><topic>Technology</topic><topic>Traffic congestion</topic><topic>Traffic delay</topic><topic>Traffic flow</topic><toplevel>online_resources</toplevel><creatorcontrib>Niu, Haifeng</creatorcontrib><creatorcontrib>Bhowmick, Chandreyee</creatorcontrib><creatorcontrib>Jagannathan, Sarangapani</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Niu, Haifeng</au><au>Bhowmick, Chandreyee</au><au>Jagannathan, Sarangapani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attack Detection and Approximation in Nonlinear Networked Control Systems Using Neural Networks</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><stitle>IEEE T NEUR NET LEAR</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2020-01</date><risdate>2020</risdate><volume>31</volume><issue>1</issue><spage>235</spage><epage>245</epage><pages>235-245</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In networked control systems (NCS), a certain class of attacks on the communication network is known to raise traffic flows causing delays and packet losses to increase. This paper presents a novel neural network (NN)-based attack detection and estimation scheme that captures the abnormal traffic flow due to a class of attacks on the communication links within the feedback loop of an NCS. By modeling the unknown network flow as a nonlinear function at the bottleneck node and using a NN observer, the network attack detection residual is defined and utilized to determine the onset of an attack in the communication network when the residual exceeds a predefined threshold. Upon detection, another NN is used to estimate the flow injected by the attack. For the physical system, we develop an attack detection scheme by using an adaptive dynamic programming-based optimal event-triggered NN controller in the presence of network delays and packet losses. Attacks on the network as well as on the sensors of the physical system can be detected and estimated with the proposed scheme. The simulation results confirm theoretical conclusions.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><pmid>30892252</pmid><doi>10.1109/TNNLS.2019.2900430</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2310-3737</orcidid><orcidid>https://orcid.org/0000-0002-2261-8288</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2020-01, Vol.31 (1), p.235-245
issn 2162-237X
2162-2388
language eng
recordid cdi_webofscience_primary_000506609000020CitationCount
source IEEE Electronic Library (IEL)
subjects Actor-critic network
Adaptive systems
Artificial neural networks
attack detection
attack estimation
Communication
Communication networks
Communications networks
Computer Science
Computer Science, Artificial Intelligence
Computer Science, Hardware & Architecture
Computer Science, Theory & Methods
Computer simulation
Control systems
Control theory
Delays
Dynamic programming
Engineering
Engineering, Electrical & Electronic
event-triggered control
Feedback loops
flow control
networked control system (NCS)
neural network (NN)
Neural networks
Nonlinear control
Nonlinear systems
Observers
optimal control
Science & Technology
Sensors
Technology
Traffic congestion
Traffic delay
Traffic flow
title Attack Detection and Approximation in Nonlinear Networked Control Systems Using Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attack%20Detection%20and%20Approximation%20in%20Nonlinear%20Networked%20Control%20Systems%20Using%20Neural%20Networks&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Niu,%20Haifeng&rft.date=2020-01&rft.volume=31&rft.issue=1&rft.spage=235&rft.epage=245&rft.pages=235-245&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2019.2900430&rft_dat=%3Cproquest_RIE%3E2333733272%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333733272&rft_id=info:pmid/30892252&rft_ieee_id=8668694&rfr_iscdi=true