2‐Methylcitrate cycle: a well‐regulated controller of Bacillus sporulation

Summary Bacillus thuringiensis is the most widely used eco‐friendly biopesticide, containing two primary determinants of biocontrol, endospore and insecticidal crystal proteins (ICPs). The 2‐methylcitrate cycle is a widespread carbon metabolic pathway playing a crucial role in channelling propionyl‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2020-03, Vol.22 (3), p.1125-1140
Hauptverfasser: Zheng, Cao, Yu, Zhaoqing, Du, Cuiying, Gong, Yujing, Yin, Wen, Li, Xinfeng, Li, Zhou, Römling, Ute, Chou, Shan‐Ho, He, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1140
container_issue 3
container_start_page 1125
container_title Environmental microbiology
container_volume 22
creator Zheng, Cao
Yu, Zhaoqing
Du, Cuiying
Gong, Yujing
Yin, Wen
Li, Xinfeng
Li, Zhou
Römling, Ute
Chou, Shan‐Ho
He, Jin
description Summary Bacillus thuringiensis is the most widely used eco‐friendly biopesticide, containing two primary determinants of biocontrol, endospore and insecticidal crystal proteins (ICPs). The 2‐methylcitrate cycle is a widespread carbon metabolic pathway playing a crucial role in channelling propionyl‐CoA, but with poorly understood metabolic regulatory mechanisms. Here, we dissect the transcriptional regulation of the 2‐methylcitrate cycle operon prpCDB and report its unprecedented role in controlling the sporulation process of B. thuringiensis. We found that the transcriptional activity of the prp operon encoding the three critical enzymes PrpC, PrpD, and PrpB in the 2‐methylcitrate cycle was negatively regulated by the two global transcription factors CcpA and AbrB, while positively regulated by the LysR family regulator CcpC, which jointly account for the fact that the 2‐methylcitrate cycle is specifically and highly active in the stationary phase of growth. We also found that the prpD mutant accumulated 2‐methylcitrate, the intermediate metabolite of the 2‐methylcitrate cycle, which delayed and inhibited sporulation at the early stage. Thus, our results not only revealed sophisticated transcriptional regulatory mechanisms for the metabolic 2‐methylcitrate cycle but also identified 2‐methylcitrate as a novel regulator of sporulation in B. thuringiensis.
doi_str_mv 10.1111/1462-2920.14901
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_474753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329738295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4091-d75a1797af4924fd43f2e28f2756276e2799df75d02e8daa50efa8014129e8343</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhi0Eot2FMzcUictesrXHThxzY6tdqNTCBc6Wm4whxa2LnajqjUfgGXkSHNLNgQu-zHjm868Z_4S8YvSWpbNgooQcFKSrUJQ9IfOp8nTKGczIVYw7Spnkkj4nM86qoirLak4-wu-fvzbYfTu7uu2C6TCrz7XDt5nJTuhc6gb82rvUaLLaH7rgncOQeZvdmbp1ro9ZPPowEK0_vCDPrHERX17iNfnycP95-SFff3q_Wr5b57WgiuWNLAyTShorFAjbCG4BobIgixJkiSCVaqwsGgpYNcYUFK2pKBMMFFZc8GuSj7rxhMd-q4-h3Ztw1t60-lL6njLUQgpZ8MTfjPwx-B89xk7v21in_cwBfR81cFCSV6CKhL75B935PhzSNokqFStB8DJRi5Gqg48xoJ1GYFQP1ujh8_VghP5rTXrx-qLbb_fYTPyjFwkoRuDUOjz_T0_fb1aj8B8qZ5ky</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369162436</pqid></control><display><type>article</type><title>2‐Methylcitrate cycle: a well‐regulated controller of Bacillus sporulation</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zheng, Cao ; Yu, Zhaoqing ; Du, Cuiying ; Gong, Yujing ; Yin, Wen ; Li, Xinfeng ; Li, Zhou ; Römling, Ute ; Chou, Shan‐Ho ; He, Jin</creator><creatorcontrib>Zheng, Cao ; Yu, Zhaoqing ; Du, Cuiying ; Gong, Yujing ; Yin, Wen ; Li, Xinfeng ; Li, Zhou ; Römling, Ute ; Chou, Shan‐Ho ; He, Jin</creatorcontrib><description>Summary Bacillus thuringiensis is the most widely used eco‐friendly biopesticide, containing two primary determinants of biocontrol, endospore and insecticidal crystal proteins (ICPs). The 2‐methylcitrate cycle is a widespread carbon metabolic pathway playing a crucial role in channelling propionyl‐CoA, but with poorly understood metabolic regulatory mechanisms. Here, we dissect the transcriptional regulation of the 2‐methylcitrate cycle operon prpCDB and report its unprecedented role in controlling the sporulation process of B. thuringiensis. We found that the transcriptional activity of the prp operon encoding the three critical enzymes PrpC, PrpD, and PrpB in the 2‐methylcitrate cycle was negatively regulated by the two global transcription factors CcpA and AbrB, while positively regulated by the LysR family regulator CcpC, which jointly account for the fact that the 2‐methylcitrate cycle is specifically and highly active in the stationary phase of growth. We also found that the prpD mutant accumulated 2‐methylcitrate, the intermediate metabolite of the 2‐methylcitrate cycle, which delayed and inhibited sporulation at the early stage. Thus, our results not only revealed sophisticated transcriptional regulatory mechanisms for the metabolic 2‐methylcitrate cycle but also identified 2‐methylcitrate as a novel regulator of sporulation in B. thuringiensis.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.14901</identifier><identifier>PMID: 31858668</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acyl Coenzyme A - metabolism ; Bacillus thuringiensis - enzymology ; Bacillus thuringiensis - genetics ; Bacillus thuringiensis - growth &amp; development ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological control ; Biopesticides ; Channeling ; Citrates - metabolism ; Crystal proteins ; Gene Expression Regulation, Bacterial - genetics ; Gene regulation ; Hydro-Lyases - genetics ; Insecticides ; Metabolic Networks and Pathways - genetics ; Metabolic pathways ; Metabolism ; Metabolites ; Mutants ; Operon - genetics ; Pesticides ; Regulatory mechanisms (biology) ; Spores, Bacterial - genetics ; Spores, Bacterial - growth &amp; development ; Sporulation ; Stationary phase ; Transcription ; Transcription factors ; Transcription Factors - genetics</subject><ispartof>Environmental microbiology, 2020-03, Vol.22 (3), p.1125-1140</ispartof><rights>2019 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2020 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4091-d75a1797af4924fd43f2e28f2756276e2799df75d02e8daa50efa8014129e8343</citedby><cites>FETCH-LOGICAL-c4091-d75a1797af4924fd43f2e28f2756276e2799df75d02e8daa50efa8014129e8343</cites><orcidid>0000-0002-1456-8284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.14901$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.14901$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31858668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:142589366$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Cao</creatorcontrib><creatorcontrib>Yu, Zhaoqing</creatorcontrib><creatorcontrib>Du, Cuiying</creatorcontrib><creatorcontrib>Gong, Yujing</creatorcontrib><creatorcontrib>Yin, Wen</creatorcontrib><creatorcontrib>Li, Xinfeng</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><creatorcontrib>Römling, Ute</creatorcontrib><creatorcontrib>Chou, Shan‐Ho</creatorcontrib><creatorcontrib>He, Jin</creatorcontrib><title>2‐Methylcitrate cycle: a well‐regulated controller of Bacillus sporulation</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Bacillus thuringiensis is the most widely used eco‐friendly biopesticide, containing two primary determinants of biocontrol, endospore and insecticidal crystal proteins (ICPs). The 2‐methylcitrate cycle is a widespread carbon metabolic pathway playing a crucial role in channelling propionyl‐CoA, but with poorly understood metabolic regulatory mechanisms. Here, we dissect the transcriptional regulation of the 2‐methylcitrate cycle operon prpCDB and report its unprecedented role in controlling the sporulation process of B. thuringiensis. We found that the transcriptional activity of the prp operon encoding the three critical enzymes PrpC, PrpD, and PrpB in the 2‐methylcitrate cycle was negatively regulated by the two global transcription factors CcpA and AbrB, while positively regulated by the LysR family regulator CcpC, which jointly account for the fact that the 2‐methylcitrate cycle is specifically and highly active in the stationary phase of growth. We also found that the prpD mutant accumulated 2‐methylcitrate, the intermediate metabolite of the 2‐methylcitrate cycle, which delayed and inhibited sporulation at the early stage. Thus, our results not only revealed sophisticated transcriptional regulatory mechanisms for the metabolic 2‐methylcitrate cycle but also identified 2‐methylcitrate as a novel regulator of sporulation in B. thuringiensis.</description><subject>Acyl Coenzyme A - metabolism</subject><subject>Bacillus thuringiensis - enzymology</subject><subject>Bacillus thuringiensis - genetics</subject><subject>Bacillus thuringiensis - growth &amp; development</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological control</subject><subject>Biopesticides</subject><subject>Channeling</subject><subject>Citrates - metabolism</subject><subject>Crystal proteins</subject><subject>Gene Expression Regulation, Bacterial - genetics</subject><subject>Gene regulation</subject><subject>Hydro-Lyases - genetics</subject><subject>Insecticides</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mutants</subject><subject>Operon - genetics</subject><subject>Pesticides</subject><subject>Regulatory mechanisms (biology)</subject><subject>Spores, Bacterial - genetics</subject><subject>Spores, Bacterial - growth &amp; development</subject><subject>Sporulation</subject><subject>Stationary phase</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcGO0zAQhi0Eot2FMzcUictesrXHThxzY6tdqNTCBc6Wm4whxa2LnajqjUfgGXkSHNLNgQu-zHjm868Z_4S8YvSWpbNgooQcFKSrUJQ9IfOp8nTKGczIVYw7Spnkkj4nM86qoirLak4-wu-fvzbYfTu7uu2C6TCrz7XDt5nJTuhc6gb82rvUaLLaH7rgncOQeZvdmbp1ro9ZPPowEK0_vCDPrHERX17iNfnycP95-SFff3q_Wr5b57WgiuWNLAyTShorFAjbCG4BobIgixJkiSCVaqwsGgpYNcYUFK2pKBMMFFZc8GuSj7rxhMd-q4-h3Ztw1t60-lL6njLUQgpZ8MTfjPwx-B89xk7v21in_cwBfR81cFCSV6CKhL75B935PhzSNokqFStB8DJRi5Gqg48xoJ1GYFQP1ujh8_VghP5rTXrx-qLbb_fYTPyjFwkoRuDUOjz_T0_fb1aj8B8qZ5ky</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Zheng, Cao</creator><creator>Yu, Zhaoqing</creator><creator>Du, Cuiying</creator><creator>Gong, Yujing</creator><creator>Yin, Wen</creator><creator>Li, Xinfeng</creator><creator>Li, Zhou</creator><creator>Römling, Ute</creator><creator>Chou, Shan‐Ho</creator><creator>He, Jin</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0002-1456-8284</orcidid></search><sort><creationdate>202003</creationdate><title>2‐Methylcitrate cycle: a well‐regulated controller of Bacillus sporulation</title><author>Zheng, Cao ; Yu, Zhaoqing ; Du, Cuiying ; Gong, Yujing ; Yin, Wen ; Li, Xinfeng ; Li, Zhou ; Römling, Ute ; Chou, Shan‐Ho ; He, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4091-d75a1797af4924fd43f2e28f2756276e2799df75d02e8daa50efa8014129e8343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acyl Coenzyme A - metabolism</topic><topic>Bacillus thuringiensis - enzymology</topic><topic>Bacillus thuringiensis - genetics</topic><topic>Bacillus thuringiensis - growth &amp; development</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological control</topic><topic>Biopesticides</topic><topic>Channeling</topic><topic>Citrates - metabolism</topic><topic>Crystal proteins</topic><topic>Gene Expression Regulation, Bacterial - genetics</topic><topic>Gene regulation</topic><topic>Hydro-Lyases - genetics</topic><topic>Insecticides</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mutants</topic><topic>Operon - genetics</topic><topic>Pesticides</topic><topic>Regulatory mechanisms (biology)</topic><topic>Spores, Bacterial - genetics</topic><topic>Spores, Bacterial - growth &amp; development</topic><topic>Sporulation</topic><topic>Stationary phase</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Cao</creatorcontrib><creatorcontrib>Yu, Zhaoqing</creatorcontrib><creatorcontrib>Du, Cuiying</creatorcontrib><creatorcontrib>Gong, Yujing</creatorcontrib><creatorcontrib>Yin, Wen</creatorcontrib><creatorcontrib>Li, Xinfeng</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><creatorcontrib>Römling, Ute</creatorcontrib><creatorcontrib>Chou, Shan‐Ho</creatorcontrib><creatorcontrib>He, Jin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Cao</au><au>Yu, Zhaoqing</au><au>Du, Cuiying</au><au>Gong, Yujing</au><au>Yin, Wen</au><au>Li, Xinfeng</au><au>Li, Zhou</au><au>Römling, Ute</au><au>Chou, Shan‐Ho</au><au>He, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2‐Methylcitrate cycle: a well‐regulated controller of Bacillus sporulation</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2020-03</date><risdate>2020</risdate><volume>22</volume><issue>3</issue><spage>1125</spage><epage>1140</epage><pages>1125-1140</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Bacillus thuringiensis is the most widely used eco‐friendly biopesticide, containing two primary determinants of biocontrol, endospore and insecticidal crystal proteins (ICPs). The 2‐methylcitrate cycle is a widespread carbon metabolic pathway playing a crucial role in channelling propionyl‐CoA, but with poorly understood metabolic regulatory mechanisms. Here, we dissect the transcriptional regulation of the 2‐methylcitrate cycle operon prpCDB and report its unprecedented role in controlling the sporulation process of B. thuringiensis. We found that the transcriptional activity of the prp operon encoding the three critical enzymes PrpC, PrpD, and PrpB in the 2‐methylcitrate cycle was negatively regulated by the two global transcription factors CcpA and AbrB, while positively regulated by the LysR family regulator CcpC, which jointly account for the fact that the 2‐methylcitrate cycle is specifically and highly active in the stationary phase of growth. We also found that the prpD mutant accumulated 2‐methylcitrate, the intermediate metabolite of the 2‐methylcitrate cycle, which delayed and inhibited sporulation at the early stage. Thus, our results not only revealed sophisticated transcriptional regulatory mechanisms for the metabolic 2‐methylcitrate cycle but also identified 2‐methylcitrate as a novel regulator of sporulation in B. thuringiensis.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31858668</pmid><doi>10.1111/1462-2920.14901</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1456-8284</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2020-03, Vol.22 (3), p.1125-1140
issn 1462-2912
1462-2920
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_474753
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acyl Coenzyme A - metabolism
Bacillus thuringiensis - enzymology
Bacillus thuringiensis - genetics
Bacillus thuringiensis - growth & development
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological control
Biopesticides
Channeling
Citrates - metabolism
Crystal proteins
Gene Expression Regulation, Bacterial - genetics
Gene regulation
Hydro-Lyases - genetics
Insecticides
Metabolic Networks and Pathways - genetics
Metabolic pathways
Metabolism
Metabolites
Mutants
Operon - genetics
Pesticides
Regulatory mechanisms (biology)
Spores, Bacterial - genetics
Spores, Bacterial - growth & development
Sporulation
Stationary phase
Transcription
Transcription factors
Transcription Factors - genetics
title 2‐Methylcitrate cycle: a well‐regulated controller of Bacillus sporulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T23%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2%E2%80%90Methylcitrate%20cycle:%20a%20well%E2%80%90regulated%20controller%20of%20Bacillus%20sporulation&rft.jtitle=Environmental%20microbiology&rft.au=Zheng,%20Cao&rft.date=2020-03&rft.volume=22&rft.issue=3&rft.spage=1125&rft.epage=1140&rft.pages=1125-1140&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.14901&rft_dat=%3Cproquest_swepu%3E2329738295%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369162436&rft_id=info:pmid/31858668&rfr_iscdi=true