Neuronal lactate levels depend on glia‐derived lactate during high brain activity in Drosophila
Lactate/pyruvate transport between glial cells and neurons is thought to play an important role in how brain cells sustain the high‐energy demand that neuronal activity requires. However, the in vivo mechanisms and characteristics that underlie the transport of monocarboxylates are poorly described....
Gespeichert in:
Veröffentlicht in: | Glia 2020-06, Vol.68 (6), p.1213-1227 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1227 |
---|---|
container_issue | 6 |
container_start_page | 1213 |
container_title | Glia |
container_volume | 68 |
creator | González‐Gutiérrez, Andrés Ibacache, Andrés Esparza, Andrés Barros, Luis Felipe Sierralta, Jimena |
description | Lactate/pyruvate transport between glial cells and neurons is thought to play an important role in how brain cells sustain the high‐energy demand that neuronal activity requires. However, the in vivo mechanisms and characteristics that underlie the transport of monocarboxylates are poorly described. Here, we use Drosophila expressing genetically encoded FRET sensors to provide an ex vivo characterization of the transport of monocarboxylates in motor neurons and glial cells from the larval ventral nerve cord. We show that lactate/pyruvate transport in glial cells is coupled to protons and is more efficient than in neurons. Glial cells maintain higher levels of intracellular lactate generating a positive gradient toward neurons. Interestingly, during high neuronal activity, raised lactate in motor neurons is dependent on transfer from glial cells mediated in part by the previously described monocarboxylate transporter Chaski, providing support for in vivo glia‐to‐neuron lactate shuttling during neuronal activity.
We characterize lactate/pyruvate transport in glial cells and neurons from Drosophila larval brain using FRET sensors.
Raises in neuronal lactate during high neuronal activity is dependent on the transfer of monocarboxylates from glial cells. |
doi_str_mv | 10.1002/glia.23772 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2330791897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330791897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-87cf81533885303bbb705ed991b0163736d5080ef20611899eb1adf16e09c4803</originalsourceid><addsrcrecordid>eNp9kMFO3DAQQK0KVBbaSz-gstRLhRSYiTexfURboEgruLTnyIknu0beZGtvFu2NT-Ab-RKcLuXQAyfb8psnzWPsC8IZAuTnC-_MWS6kzD-wCYJWGaIoD9gElJ5mONV4xI5jvAfA9JAf2ZFAJUuQcsLMLQ2h74zn3jQbsyHuaUs-cktr6izvOz7qnx-fLAW3JfvG2SG4bsGXbrHkdTCu4-nDbd1mx9P9R-hjv146bz6xw9b4SJ9fzxP2--ry1-xnNr-7vpldzLNGFDLPlGxahYUQShUCRF3XEgqyWmMNWAopSluAAmpzKBGV1lSjsS2WBLqZKhAn7Pveuw79n4Hiplq52JD3pqN-iFUuBEidJmVCv_2H3vdDSBFGSslCAchReLqnmrRLDNRW6-BWJuwqhGoMX41lqr_hE_z1VTnUK7Jv6L_SCcA98OA87d5RVdfzm4u99AU8Eo1X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387580070</pqid></control><display><type>article</type><title>Neuronal lactate levels depend on glia‐derived lactate during high brain activity in Drosophila</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>González‐Gutiérrez, Andrés ; Ibacache, Andrés ; Esparza, Andrés ; Barros, Luis Felipe ; Sierralta, Jimena</creator><creatorcontrib>González‐Gutiérrez, Andrés ; Ibacache, Andrés ; Esparza, Andrés ; Barros, Luis Felipe ; Sierralta, Jimena</creatorcontrib><description>Lactate/pyruvate transport between glial cells and neurons is thought to play an important role in how brain cells sustain the high‐energy demand that neuronal activity requires. However, the in vivo mechanisms and characteristics that underlie the transport of monocarboxylates are poorly described. Here, we use Drosophila expressing genetically encoded FRET sensors to provide an ex vivo characterization of the transport of monocarboxylates in motor neurons and glial cells from the larval ventral nerve cord. We show that lactate/pyruvate transport in glial cells is coupled to protons and is more efficient than in neurons. Glial cells maintain higher levels of intracellular lactate generating a positive gradient toward neurons. Interestingly, during high neuronal activity, raised lactate in motor neurons is dependent on transfer from glial cells mediated in part by the previously described monocarboxylate transporter Chaski, providing support for in vivo glia‐to‐neuron lactate shuttling during neuronal activity.
We characterize lactate/pyruvate transport in glial cells and neurons from Drosophila larval brain using FRET sensors.
Raises in neuronal lactate during high neuronal activity is dependent on the transfer of monocarboxylates from glial cells.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.23772</identifier><identifier>PMID: 31876077</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Brain ; Chaski ; Drosophila ; Energy demand ; Fluorescence resonance energy transfer ; Genetic code ; genetically encoded sensors ; Glial cells ; Insects ; lactate/pyruvate transport ; Lactic acid ; Motor neurons ; Neuronal-glial interactions ; Neurons ; Protons ; Pyruvic acid ; Transport ; Ventral nerve cord</subject><ispartof>Glia, 2020-06, Vol.68 (6), p.1213-1227</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-87cf81533885303bbb705ed991b0163736d5080ef20611899eb1adf16e09c4803</citedby><cites>FETCH-LOGICAL-c3572-87cf81533885303bbb705ed991b0163736d5080ef20611899eb1adf16e09c4803</cites><orcidid>0000-0002-6623-4833 ; 0000-0002-0257-146X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.23772$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.23772$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31876077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González‐Gutiérrez, Andrés</creatorcontrib><creatorcontrib>Ibacache, Andrés</creatorcontrib><creatorcontrib>Esparza, Andrés</creatorcontrib><creatorcontrib>Barros, Luis Felipe</creatorcontrib><creatorcontrib>Sierralta, Jimena</creatorcontrib><title>Neuronal lactate levels depend on glia‐derived lactate during high brain activity in Drosophila</title><title>Glia</title><addtitle>Glia</addtitle><description>Lactate/pyruvate transport between glial cells and neurons is thought to play an important role in how brain cells sustain the high‐energy demand that neuronal activity requires. However, the in vivo mechanisms and characteristics that underlie the transport of monocarboxylates are poorly described. Here, we use Drosophila expressing genetically encoded FRET sensors to provide an ex vivo characterization of the transport of monocarboxylates in motor neurons and glial cells from the larval ventral nerve cord. We show that lactate/pyruvate transport in glial cells is coupled to protons and is more efficient than in neurons. Glial cells maintain higher levels of intracellular lactate generating a positive gradient toward neurons. Interestingly, during high neuronal activity, raised lactate in motor neurons is dependent on transfer from glial cells mediated in part by the previously described monocarboxylate transporter Chaski, providing support for in vivo glia‐to‐neuron lactate shuttling during neuronal activity.
We characterize lactate/pyruvate transport in glial cells and neurons from Drosophila larval brain using FRET sensors.
Raises in neuronal lactate during high neuronal activity is dependent on the transfer of monocarboxylates from glial cells.</description><subject>Brain</subject><subject>Chaski</subject><subject>Drosophila</subject><subject>Energy demand</subject><subject>Fluorescence resonance energy transfer</subject><subject>Genetic code</subject><subject>genetically encoded sensors</subject><subject>Glial cells</subject><subject>Insects</subject><subject>lactate/pyruvate transport</subject><subject>Lactic acid</subject><subject>Motor neurons</subject><subject>Neuronal-glial interactions</subject><subject>Neurons</subject><subject>Protons</subject><subject>Pyruvic acid</subject><subject>Transport</subject><subject>Ventral nerve cord</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQQK0KVBbaSz-gstRLhRSYiTexfURboEgruLTnyIknu0beZGtvFu2NT-Ab-RKcLuXQAyfb8psnzWPsC8IZAuTnC-_MWS6kzD-wCYJWGaIoD9gElJ5mONV4xI5jvAfA9JAf2ZFAJUuQcsLMLQ2h74zn3jQbsyHuaUs-cktr6izvOz7qnx-fLAW3JfvG2SG4bsGXbrHkdTCu4-nDbd1mx9P9R-hjv146bz6xw9b4SJ9fzxP2--ry1-xnNr-7vpldzLNGFDLPlGxahYUQShUCRF3XEgqyWmMNWAopSluAAmpzKBGV1lSjsS2WBLqZKhAn7Pveuw79n4Hiplq52JD3pqN-iFUuBEidJmVCv_2H3vdDSBFGSslCAchReLqnmrRLDNRW6-BWJuwqhGoMX41lqr_hE_z1VTnUK7Jv6L_SCcA98OA87d5RVdfzm4u99AU8Eo1X</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>González‐Gutiérrez, Andrés</creator><creator>Ibacache, Andrés</creator><creator>Esparza, Andrés</creator><creator>Barros, Luis Felipe</creator><creator>Sierralta, Jimena</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6623-4833</orcidid><orcidid>https://orcid.org/0000-0002-0257-146X</orcidid></search><sort><creationdate>202006</creationdate><title>Neuronal lactate levels depend on glia‐derived lactate during high brain activity in Drosophila</title><author>González‐Gutiérrez, Andrés ; Ibacache, Andrés ; Esparza, Andrés ; Barros, Luis Felipe ; Sierralta, Jimena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-87cf81533885303bbb705ed991b0163736d5080ef20611899eb1adf16e09c4803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brain</topic><topic>Chaski</topic><topic>Drosophila</topic><topic>Energy demand</topic><topic>Fluorescence resonance energy transfer</topic><topic>Genetic code</topic><topic>genetically encoded sensors</topic><topic>Glial cells</topic><topic>Insects</topic><topic>lactate/pyruvate transport</topic><topic>Lactic acid</topic><topic>Motor neurons</topic><topic>Neuronal-glial interactions</topic><topic>Neurons</topic><topic>Protons</topic><topic>Pyruvic acid</topic><topic>Transport</topic><topic>Ventral nerve cord</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González‐Gutiérrez, Andrés</creatorcontrib><creatorcontrib>Ibacache, Andrés</creatorcontrib><creatorcontrib>Esparza, Andrés</creatorcontrib><creatorcontrib>Barros, Luis Felipe</creatorcontrib><creatorcontrib>Sierralta, Jimena</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González‐Gutiérrez, Andrés</au><au>Ibacache, Andrés</au><au>Esparza, Andrés</au><au>Barros, Luis Felipe</au><au>Sierralta, Jimena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuronal lactate levels depend on glia‐derived lactate during high brain activity in Drosophila</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2020-06</date><risdate>2020</risdate><volume>68</volume><issue>6</issue><spage>1213</spage><epage>1227</epage><pages>1213-1227</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><abstract>Lactate/pyruvate transport between glial cells and neurons is thought to play an important role in how brain cells sustain the high‐energy demand that neuronal activity requires. However, the in vivo mechanisms and characteristics that underlie the transport of monocarboxylates are poorly described. Here, we use Drosophila expressing genetically encoded FRET sensors to provide an ex vivo characterization of the transport of monocarboxylates in motor neurons and glial cells from the larval ventral nerve cord. We show that lactate/pyruvate transport in glial cells is coupled to protons and is more efficient than in neurons. Glial cells maintain higher levels of intracellular lactate generating a positive gradient toward neurons. Interestingly, during high neuronal activity, raised lactate in motor neurons is dependent on transfer from glial cells mediated in part by the previously described monocarboxylate transporter Chaski, providing support for in vivo glia‐to‐neuron lactate shuttling during neuronal activity.
We characterize lactate/pyruvate transport in glial cells and neurons from Drosophila larval brain using FRET sensors.
Raises in neuronal lactate during high neuronal activity is dependent on the transfer of monocarboxylates from glial cells.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31876077</pmid><doi>10.1002/glia.23772</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6623-4833</orcidid><orcidid>https://orcid.org/0000-0002-0257-146X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2020-06, Vol.68 (6), p.1213-1227 |
issn | 0894-1491 1098-1136 |
language | eng |
recordid | cdi_proquest_miscellaneous_2330791897 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Brain Chaski Drosophila Energy demand Fluorescence resonance energy transfer Genetic code genetically encoded sensors Glial cells Insects lactate/pyruvate transport Lactic acid Motor neurons Neuronal-glial interactions Neurons Protons Pyruvic acid Transport Ventral nerve cord |
title | Neuronal lactate levels depend on glia‐derived lactate during high brain activity in Drosophila |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuronal%20lactate%20levels%20depend%20on%20glia%E2%80%90derived%20lactate%20during%20high%20brain%20activity%20in%20Drosophila&rft.jtitle=Glia&rft.au=Gonz%C3%A1lez%E2%80%90Guti%C3%A9rrez,%20Andr%C3%A9s&rft.date=2020-06&rft.volume=68&rft.issue=6&rft.spage=1213&rft.epage=1227&rft.pages=1213-1227&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.23772&rft_dat=%3Cproquest_cross%3E2330791897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387580070&rft_id=info:pmid/31876077&rfr_iscdi=true |