Species‐level image classification with convolutional neural network enables insect identification from habitus images

Changes in insect biomass, abundance, and diversity are challenging to track at sufficient spatial, temporal, and taxonomic resolution. Camera traps can capture habitus images of ground‐dwelling insects. However, currently sampling involves manually detecting and identifying specimens. Here, we test...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology and evolution 2020-01, Vol.10 (2), p.737-747
Hauptverfasser: Hansen, Oskar L. P., Svenning, Jens‐Christian, Olsen, Kent, Dupont, Steen, Garner, Beulah H., Iosifidis, Alexandros, Price, Benjamin W., Høye, Toke T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 747
container_issue 2
container_start_page 737
container_title Ecology and evolution
container_volume 10
creator Hansen, Oskar L. P.
Svenning, Jens‐Christian
Olsen, Kent
Dupont, Steen
Garner, Beulah H.
Iosifidis, Alexandros
Price, Benjamin W.
Høye, Toke T.
description Changes in insect biomass, abundance, and diversity are challenging to track at sufficient spatial, temporal, and taxonomic resolution. Camera traps can capture habitus images of ground‐dwelling insects. However, currently sampling involves manually detecting and identifying specimens. Here, we test whether a convolutional neural network (CNN) can classify habitus images of ground beetles to species level, and estimate how correct classification relates to body size, number of species inside genera, and species identity. We created an image database of 65,841 museum specimens comprising 361 carabid beetle species from the British Isles and fine‐tuned the parameters of a pretrained CNN from a training dataset. By summing up class confidence values within genus, tribe, and subfamily and setting a confidence threshold, we trade‐off between classification accuracy, precision, and recall and taxonomic resolution. The CNN classified 51.9% of 19,164 test images correctly to species level and 74.9% to genus level. Average classification recall on species level was 50.7%. Applying a threshold of 0.5 increased the average classification recall to 74.6% at the expense of taxonomic resolution. Higher top value from the output layer and larger sized species were more often classified correctly, as were images of species in genera with few species. Fine‐tuning enabled us to classify images with a high mean recall for the whole test dataset to species or higher taxonomic levels, however, with high variability. This indicates that some species are more difficult to identify because of properties such as their body size or the number of related species. Together, species‐level image classification of arthropods from museum collections and ecological monitoring can substantially increase the amount of occurrence data that can feasibly be collected. These tools thus provide new opportunities in understanding and predicting ecological responses to environmental change. Species identity can be inferred from simple images of an extensive and highly accurate carabid beetle collection. Such image classification will be instrumental in efforts to increase the rate at which crucial occurrence data for insects are generated in the future.
doi_str_mv 10.1002/ece3.5921
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000504112000001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c01d4d02cbea445f9f5264d13dbac9e5</doaj_id><sourcerecordid>2347358914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5091-ac68557baab3e02076121c9ce525a84f2a31ae8c5973fe6cd5d6c987ca7b687f3</originalsourceid><addsrcrecordid>eNqNks-O0zAQxiMEYlfLHngBFIkTQt3138S-IKGowEorcQDOljOZtC5pXOykZW88As_Ik-A2pewekPDFlv2bb8bzTZY9p-SKEsKuEZBfSc3oo-ycESFnZSnV43vns-wyxhVJqyBMkPJpdsYZoVJxfZ59_7RBcBh__fjZ4Ra73K3tAnPobIyudWAH5_t854ZlDr7f-m7cX9gu73EMh23Y-fA1x97WHcbc9RFhyF2D_fA3vg1-nS9t7YYxThnis-xJa7uIl8f9Ivvybv65-jC7_fj-pnp7OwNJNJ1ZKJSUZW1tzZEwUhaUUdCAkkmrRMsspxYVSF3yFgtoZFOAViXYsi5U2fKL7GbSbbxdmU1I2cOd8daZw4UPC2PD4KBDA4Q2oiEMarRCyFa3khWiobypLWiUSevNpLUZ6zU2kP6YevBA9OFL75Zm4bem0EpJppLAy6NA8N9GjINZ-TGkdkbDuCi5VJqKRL2aKAg-xoDtKQMlZu-52Xtu9p4n9sX9kk7kH4cToCZgh7VvY_K6BzxhaSgkEZSy_XgQWrnhYFjlx35Ioa__PzTR10fadXj375LNvJrzQ-2_AQQg2xI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347358914</pqid></control><display><type>article</type><title>Species‐level image classification with convolutional neural network enables insect identification from habitus images</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Hansen, Oskar L. P. ; Svenning, Jens‐Christian ; Olsen, Kent ; Dupont, Steen ; Garner, Beulah H. ; Iosifidis, Alexandros ; Price, Benjamin W. ; Høye, Toke T.</creator><creatorcontrib>Hansen, Oskar L. P. ; Svenning, Jens‐Christian ; Olsen, Kent ; Dupont, Steen ; Garner, Beulah H. ; Iosifidis, Alexandros ; Price, Benjamin W. ; Høye, Toke T.</creatorcontrib><description>Changes in insect biomass, abundance, and diversity are challenging to track at sufficient spatial, temporal, and taxonomic resolution. Camera traps can capture habitus images of ground‐dwelling insects. However, currently sampling involves manually detecting and identifying specimens. Here, we test whether a convolutional neural network (CNN) can classify habitus images of ground beetles to species level, and estimate how correct classification relates to body size, number of species inside genera, and species identity. We created an image database of 65,841 museum specimens comprising 361 carabid beetle species from the British Isles and fine‐tuned the parameters of a pretrained CNN from a training dataset. By summing up class confidence values within genus, tribe, and subfamily and setting a confidence threshold, we trade‐off between classification accuracy, precision, and recall and taxonomic resolution. The CNN classified 51.9% of 19,164 test images correctly to species level and 74.9% to genus level. Average classification recall on species level was 50.7%. Applying a threshold of 0.5 increased the average classification recall to 74.6% at the expense of taxonomic resolution. Higher top value from the output layer and larger sized species were more often classified correctly, as were images of species in genera with few species. Fine‐tuning enabled us to classify images with a high mean recall for the whole test dataset to species or higher taxonomic levels, however, with high variability. This indicates that some species are more difficult to identify because of properties such as their body size or the number of related species. Together, species‐level image classification of arthropods from museum collections and ecological monitoring can substantially increase the amount of occurrence data that can feasibly be collected. These tools thus provide new opportunities in understanding and predicting ecological responses to environmental change. Species identity can be inferred from simple images of an extensive and highly accurate carabid beetle collection. Such image classification will be instrumental in efforts to increase the rate at which crucial occurrence data for insects are generated in the future.</description><identifier>ISSN: 2045-7758</identifier><identifier>EISSN: 2045-7758</identifier><identifier>DOI: 10.1002/ece3.5921</identifier><identifier>PMID: 32015839</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Accuracy ; arthropod sampling ; Arthropods ; Artificial neural networks ; automatic species identification ; Beetles ; Body size ; camera trap ; Cameras ; Classification ; Data collection ; Datasets ; Ecological monitoring ; Ecology ; entomological collection ; Environmental changes ; Environmental Sciences &amp; Ecology ; Evolutionary Biology ; Genera ; Habitus ; Identification ; Image classification ; image database ; Insects ; Life Sciences &amp; Biomedicine ; Methods ; Museums ; Neural networks ; Original Research ; Recall ; Science &amp; Technology ; Species ; Species classification ; Taxonomy ; Trapping</subject><ispartof>Ecology and evolution, 2020-01, Vol.10 (2), p.737-747</ispartof><rights>2019 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2019 The Authors. Ecology and Evolution published by John Wiley &amp; Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>58</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000504112000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5091-ac68557baab3e02076121c9ce525a84f2a31ae8c5973fe6cd5d6c987ca7b687f3</citedby><cites>FETCH-LOGICAL-c5091-ac68557baab3e02076121c9ce525a84f2a31ae8c5973fe6cd5d6c987ca7b687f3</cites><orcidid>0000-0001-5497-4087 ; 0000-0001-5387-3284 ; 0000-0002-5624-128X ; 0000-0002-5229-2450 ; 0000-0003-4807-1345 ; 0000-0002-3415-0862 ; 0000-0001-6766-2840 ; 0000-0002-1598-5733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988528/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988528/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,1419,2104,2116,11569,27931,27932,28255,45581,45582,46059,46483,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32015839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hansen, Oskar L. P.</creatorcontrib><creatorcontrib>Svenning, Jens‐Christian</creatorcontrib><creatorcontrib>Olsen, Kent</creatorcontrib><creatorcontrib>Dupont, Steen</creatorcontrib><creatorcontrib>Garner, Beulah H.</creatorcontrib><creatorcontrib>Iosifidis, Alexandros</creatorcontrib><creatorcontrib>Price, Benjamin W.</creatorcontrib><creatorcontrib>Høye, Toke T.</creatorcontrib><title>Species‐level image classification with convolutional neural network enables insect identification from habitus images</title><title>Ecology and evolution</title><addtitle>ECOL EVOL</addtitle><addtitle>Ecol Evol</addtitle><description>Changes in insect biomass, abundance, and diversity are challenging to track at sufficient spatial, temporal, and taxonomic resolution. Camera traps can capture habitus images of ground‐dwelling insects. However, currently sampling involves manually detecting and identifying specimens. Here, we test whether a convolutional neural network (CNN) can classify habitus images of ground beetles to species level, and estimate how correct classification relates to body size, number of species inside genera, and species identity. We created an image database of 65,841 museum specimens comprising 361 carabid beetle species from the British Isles and fine‐tuned the parameters of a pretrained CNN from a training dataset. By summing up class confidence values within genus, tribe, and subfamily and setting a confidence threshold, we trade‐off between classification accuracy, precision, and recall and taxonomic resolution. The CNN classified 51.9% of 19,164 test images correctly to species level and 74.9% to genus level. Average classification recall on species level was 50.7%. Applying a threshold of 0.5 increased the average classification recall to 74.6% at the expense of taxonomic resolution. Higher top value from the output layer and larger sized species were more often classified correctly, as were images of species in genera with few species. Fine‐tuning enabled us to classify images with a high mean recall for the whole test dataset to species or higher taxonomic levels, however, with high variability. This indicates that some species are more difficult to identify because of properties such as their body size or the number of related species. Together, species‐level image classification of arthropods from museum collections and ecological monitoring can substantially increase the amount of occurrence data that can feasibly be collected. These tools thus provide new opportunities in understanding and predicting ecological responses to environmental change. Species identity can be inferred from simple images of an extensive and highly accurate carabid beetle collection. Such image classification will be instrumental in efforts to increase the rate at which crucial occurrence data for insects are generated in the future.</description><subject>Accuracy</subject><subject>arthropod sampling</subject><subject>Arthropods</subject><subject>Artificial neural networks</subject><subject>automatic species identification</subject><subject>Beetles</subject><subject>Body size</subject><subject>camera trap</subject><subject>Cameras</subject><subject>Classification</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Ecological monitoring</subject><subject>Ecology</subject><subject>entomological collection</subject><subject>Environmental changes</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Evolutionary Biology</subject><subject>Genera</subject><subject>Habitus</subject><subject>Identification</subject><subject>Image classification</subject><subject>image database</subject><subject>Insects</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Methods</subject><subject>Museums</subject><subject>Neural networks</subject><subject>Original Research</subject><subject>Recall</subject><subject>Science &amp; Technology</subject><subject>Species</subject><subject>Species classification</subject><subject>Taxonomy</subject><subject>Trapping</subject><issn>2045-7758</issn><issn>2045-7758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks-O0zAQxiMEYlfLHngBFIkTQt3138S-IKGowEorcQDOljOZtC5pXOykZW88As_Ik-A2pewekPDFlv2bb8bzTZY9p-SKEsKuEZBfSc3oo-ycESFnZSnV43vns-wyxhVJqyBMkPJpdsYZoVJxfZ59_7RBcBh__fjZ4Ra73K3tAnPobIyudWAH5_t854ZlDr7f-m7cX9gu73EMh23Y-fA1x97WHcbc9RFhyF2D_fA3vg1-nS9t7YYxThnis-xJa7uIl8f9Ivvybv65-jC7_fj-pnp7OwNJNJ1ZKJSUZW1tzZEwUhaUUdCAkkmrRMsspxYVSF3yFgtoZFOAViXYsi5U2fKL7GbSbbxdmU1I2cOd8daZw4UPC2PD4KBDA4Q2oiEMarRCyFa3khWiobypLWiUSevNpLUZ6zU2kP6YevBA9OFL75Zm4bem0EpJppLAy6NA8N9GjINZ-TGkdkbDuCi5VJqKRL2aKAg-xoDtKQMlZu-52Xtu9p4n9sX9kk7kH4cToCZgh7VvY_K6BzxhaSgkEZSy_XgQWrnhYFjlx35Ioa__PzTR10fadXj375LNvJrzQ-2_AQQg2xI</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Hansen, Oskar L. P.</creator><creator>Svenning, Jens‐Christian</creator><creator>Olsen, Kent</creator><creator>Dupont, Steen</creator><creator>Garner, Beulah H.</creator><creator>Iosifidis, Alexandros</creator><creator>Price, Benjamin W.</creator><creator>Høye, Toke T.</creator><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5497-4087</orcidid><orcidid>https://orcid.org/0000-0001-5387-3284</orcidid><orcidid>https://orcid.org/0000-0002-5624-128X</orcidid><orcidid>https://orcid.org/0000-0002-5229-2450</orcidid><orcidid>https://orcid.org/0000-0003-4807-1345</orcidid><orcidid>https://orcid.org/0000-0002-3415-0862</orcidid><orcidid>https://orcid.org/0000-0001-6766-2840</orcidid><orcidid>https://orcid.org/0000-0002-1598-5733</orcidid></search><sort><creationdate>202001</creationdate><title>Species‐level image classification with convolutional neural network enables insect identification from habitus images</title><author>Hansen, Oskar L. P. ; Svenning, Jens‐Christian ; Olsen, Kent ; Dupont, Steen ; Garner, Beulah H. ; Iosifidis, Alexandros ; Price, Benjamin W. ; Høye, Toke T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5091-ac68557baab3e02076121c9ce525a84f2a31ae8c5973fe6cd5d6c987ca7b687f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>arthropod sampling</topic><topic>Arthropods</topic><topic>Artificial neural networks</topic><topic>automatic species identification</topic><topic>Beetles</topic><topic>Body size</topic><topic>camera trap</topic><topic>Cameras</topic><topic>Classification</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Ecological monitoring</topic><topic>Ecology</topic><topic>entomological collection</topic><topic>Environmental changes</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Evolutionary Biology</topic><topic>Genera</topic><topic>Habitus</topic><topic>Identification</topic><topic>Image classification</topic><topic>image database</topic><topic>Insects</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Methods</topic><topic>Museums</topic><topic>Neural networks</topic><topic>Original Research</topic><topic>Recall</topic><topic>Science &amp; Technology</topic><topic>Species</topic><topic>Species classification</topic><topic>Taxonomy</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Oskar L. P.</creatorcontrib><creatorcontrib>Svenning, Jens‐Christian</creatorcontrib><creatorcontrib>Olsen, Kent</creatorcontrib><creatorcontrib>Dupont, Steen</creatorcontrib><creatorcontrib>Garner, Beulah H.</creatorcontrib><creatorcontrib>Iosifidis, Alexandros</creatorcontrib><creatorcontrib>Price, Benjamin W.</creatorcontrib><creatorcontrib>Høye, Toke T.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Oskar L. P.</au><au>Svenning, Jens‐Christian</au><au>Olsen, Kent</au><au>Dupont, Steen</au><au>Garner, Beulah H.</au><au>Iosifidis, Alexandros</au><au>Price, Benjamin W.</au><au>Høye, Toke T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Species‐level image classification with convolutional neural network enables insect identification from habitus images</atitle><jtitle>Ecology and evolution</jtitle><stitle>ECOL EVOL</stitle><addtitle>Ecol Evol</addtitle><date>2020-01</date><risdate>2020</risdate><volume>10</volume><issue>2</issue><spage>737</spage><epage>747</epage><pages>737-747</pages><issn>2045-7758</issn><eissn>2045-7758</eissn><abstract>Changes in insect biomass, abundance, and diversity are challenging to track at sufficient spatial, temporal, and taxonomic resolution. Camera traps can capture habitus images of ground‐dwelling insects. However, currently sampling involves manually detecting and identifying specimens. Here, we test whether a convolutional neural network (CNN) can classify habitus images of ground beetles to species level, and estimate how correct classification relates to body size, number of species inside genera, and species identity. We created an image database of 65,841 museum specimens comprising 361 carabid beetle species from the British Isles and fine‐tuned the parameters of a pretrained CNN from a training dataset. By summing up class confidence values within genus, tribe, and subfamily and setting a confidence threshold, we trade‐off between classification accuracy, precision, and recall and taxonomic resolution. The CNN classified 51.9% of 19,164 test images correctly to species level and 74.9% to genus level. Average classification recall on species level was 50.7%. Applying a threshold of 0.5 increased the average classification recall to 74.6% at the expense of taxonomic resolution. Higher top value from the output layer and larger sized species were more often classified correctly, as were images of species in genera with few species. Fine‐tuning enabled us to classify images with a high mean recall for the whole test dataset to species or higher taxonomic levels, however, with high variability. This indicates that some species are more difficult to identify because of properties such as their body size or the number of related species. Together, species‐level image classification of arthropods from museum collections and ecological monitoring can substantially increase the amount of occurrence data that can feasibly be collected. These tools thus provide new opportunities in understanding and predicting ecological responses to environmental change. Species identity can be inferred from simple images of an extensive and highly accurate carabid beetle collection. Such image classification will be instrumental in efforts to increase the rate at which crucial occurrence data for insects are generated in the future.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>32015839</pmid><doi>10.1002/ece3.5921</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5497-4087</orcidid><orcidid>https://orcid.org/0000-0001-5387-3284</orcidid><orcidid>https://orcid.org/0000-0002-5624-128X</orcidid><orcidid>https://orcid.org/0000-0002-5229-2450</orcidid><orcidid>https://orcid.org/0000-0003-4807-1345</orcidid><orcidid>https://orcid.org/0000-0002-3415-0862</orcidid><orcidid>https://orcid.org/0000-0001-6766-2840</orcidid><orcidid>https://orcid.org/0000-0002-1598-5733</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-7758
ispartof Ecology and evolution, 2020-01, Vol.10 (2), p.737-747
issn 2045-7758
2045-7758
language eng
recordid cdi_webofscience_primary_000504112000001CitationCount
source DOAJ Directory of Open Access Journals; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects Accuracy
arthropod sampling
Arthropods
Artificial neural networks
automatic species identification
Beetles
Body size
camera trap
Cameras
Classification
Data collection
Datasets
Ecological monitoring
Ecology
entomological collection
Environmental changes
Environmental Sciences & Ecology
Evolutionary Biology
Genera
Habitus
Identification
Image classification
image database
Insects
Life Sciences & Biomedicine
Methods
Museums
Neural networks
Original Research
Recall
Science & Technology
Species
Species classification
Taxonomy
Trapping
title Species‐level image classification with convolutional neural network enables insect identification from habitus images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T12%3A05%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Species%E2%80%90level%20image%20classification%20with%20convolutional%20neural%20network%20enables%20insect%20identification%20from%20habitus%20images&rft.jtitle=Ecology%20and%20evolution&rft.au=Hansen,%20Oskar%20L.%20P.&rft.date=2020-01&rft.volume=10&rft.issue=2&rft.spage=737&rft.epage=747&rft.pages=737-747&rft.issn=2045-7758&rft.eissn=2045-7758&rft_id=info:doi/10.1002/ece3.5921&rft_dat=%3Cproquest_webof%3E2347358914%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347358914&rft_id=info:pmid/32015839&rft_doaj_id=oai_doaj_org_article_c01d4d02cbea445f9f5264d13dbac9e5&rfr_iscdi=true