Thermodynamic equilibrium analysis of the vapor phase hydrodeoxygenation of guaiacol
Vapor phase hydrodeoxygenation (HDO) is a prospective route for upgrading the downstream products derived from fast pyrolysis of lignocellulosic biomass. The objective is to produce transportation fuel or value-added chemicals using a sustainable feedstock. This work reports a thermodynamic chemical...
Gespeichert in:
Veröffentlicht in: | Renewable energy 2020-03, Vol.147, p.947-956 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 956 |
---|---|
container_issue | |
container_start_page | 947 |
container_title | Renewable energy |
container_volume | 147 |
creator | Silva, Nathacha Kare Gonçalves Ribas, Rogério Marques Monteiro, Robson Souza Barrozo, Marcos Antônio de Souza Soares, Ricardo Reis |
description | Vapor phase hydrodeoxygenation (HDO) is a prospective route for upgrading the downstream products derived from fast pyrolysis of lignocellulosic biomass. The objective is to produce transportation fuel or value-added chemicals using a sustainable feedstock. This work reports a thermodynamic chemical equilibrium analysis of the vapor phase HDO of guaiacol (2-methoxyphenol), model compound representative of the lignin portion of biomass,. The chemical equilibrium was determined by simulation in the temperature range of 500–1000 K, 1 atm, and using an isothermal equilibrium reactor. These conditions were chosen to match the atmospheric HDO of guaiacol studies. The equilibrium constant and the equilibrium conversion values determined may help on the explanation of reaction pathways of the catalytic HDO of guaiacol. Most of the reactions behaved exothermically and did not show thermodynamic restriction to occur, except the hydrogenation of the aromatic ring. The desirable reactions which remove oxygen without breaking C–C bonds were thermodynamically favored. The most stable molecules were dependent on both temperature and guaiacol concentration at feed.
[Display omitted]
•Gas-phase guaiacol hydrodeoxygenation thermodynamics analysis.•Thermodynamics models by Gibbs and equilibrium reactors.•Direct deoxygenation (DDO) reactions are favored thermodynamically. |
doi_str_mv | 10.1016/j.renene.2019.09.059 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_renene_2019_09_059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148119313898</els_id><sourcerecordid>S0960148119313898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-494678dbbd06397301e64112c8971b95d05072b0f56d29dba0aa53d81080fae73</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFbfwEVeIPFOfuZnI0hRKxTc1PUwmblppiSZOpMW8_am1LWcA2dzz-HyEfJIIaNA2dM-CzjMynKgMoPZlbwiCyq4TIGJ_JosQDJIaSnoLbmLcQ9AK8HLBdluWwy9t9Oge2cS_D66ztXBHftED7qboouJb5KxxeSkDz4kh1ZHTNrJBm_R_0w7HPTo_HC-2h2108Z39-Sm0V3Eh79ckq-31-1qnW4-3z9WL5vUFGUxpqUsGRe2ri2wQvICKLKS0twIyWktKwsV8LyGpmI2l7bWoHVVWEFBQKORF0tSXnZN8DEGbNQhuF6HSVFQZzJqry5k1JmMgtmVnGvPlxrOv50cBhWNw8GgdQHNqKx3_w_8At1Db_I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermodynamic equilibrium analysis of the vapor phase hydrodeoxygenation of guaiacol</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Silva, Nathacha Kare Gonçalves ; Ribas, Rogério Marques ; Monteiro, Robson Souza ; Barrozo, Marcos Antônio de Souza ; Soares, Ricardo Reis</creator><creatorcontrib>Silva, Nathacha Kare Gonçalves ; Ribas, Rogério Marques ; Monteiro, Robson Souza ; Barrozo, Marcos Antônio de Souza ; Soares, Ricardo Reis</creatorcontrib><description>Vapor phase hydrodeoxygenation (HDO) is a prospective route for upgrading the downstream products derived from fast pyrolysis of lignocellulosic biomass. The objective is to produce transportation fuel or value-added chemicals using a sustainable feedstock. This work reports a thermodynamic chemical equilibrium analysis of the vapor phase HDO of guaiacol (2-methoxyphenol), model compound representative of the lignin portion of biomass,. The chemical equilibrium was determined by simulation in the temperature range of 500–1000 K, 1 atm, and using an isothermal equilibrium reactor. These conditions were chosen to match the atmospheric HDO of guaiacol studies. The equilibrium constant and the equilibrium conversion values determined may help on the explanation of reaction pathways of the catalytic HDO of guaiacol. Most of the reactions behaved exothermically and did not show thermodynamic restriction to occur, except the hydrogenation of the aromatic ring. The desirable reactions which remove oxygen without breaking C–C bonds were thermodynamically favored. The most stable molecules were dependent on both temperature and guaiacol concentration at feed.
[Display omitted]
•Gas-phase guaiacol hydrodeoxygenation thermodynamics analysis.•Thermodynamics models by Gibbs and equilibrium reactors.•Direct deoxygenation (DDO) reactions are favored thermodynamically.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2019.09.059</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical equilibrium ; Fast pyrolysis ; Guaiacol ; Thermodynamic analysis ; Vapor phase hydrodeoxygenation (HDO)</subject><ispartof>Renewable energy, 2020-03, Vol.147, p.947-956</ispartof><rights>2019 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-494678dbbd06397301e64112c8971b95d05072b0f56d29dba0aa53d81080fae73</citedby><cites>FETCH-LOGICAL-c343t-494678dbbd06397301e64112c8971b95d05072b0f56d29dba0aa53d81080fae73</cites><orcidid>0000-0003-1892-5311 ; 0000-0002-8873-162X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.renene.2019.09.059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Silva, Nathacha Kare Gonçalves</creatorcontrib><creatorcontrib>Ribas, Rogério Marques</creatorcontrib><creatorcontrib>Monteiro, Robson Souza</creatorcontrib><creatorcontrib>Barrozo, Marcos Antônio de Souza</creatorcontrib><creatorcontrib>Soares, Ricardo Reis</creatorcontrib><title>Thermodynamic equilibrium analysis of the vapor phase hydrodeoxygenation of guaiacol</title><title>Renewable energy</title><description>Vapor phase hydrodeoxygenation (HDO) is a prospective route for upgrading the downstream products derived from fast pyrolysis of lignocellulosic biomass. The objective is to produce transportation fuel or value-added chemicals using a sustainable feedstock. This work reports a thermodynamic chemical equilibrium analysis of the vapor phase HDO of guaiacol (2-methoxyphenol), model compound representative of the lignin portion of biomass,. The chemical equilibrium was determined by simulation in the temperature range of 500–1000 K, 1 atm, and using an isothermal equilibrium reactor. These conditions were chosen to match the atmospheric HDO of guaiacol studies. The equilibrium constant and the equilibrium conversion values determined may help on the explanation of reaction pathways of the catalytic HDO of guaiacol. Most of the reactions behaved exothermically and did not show thermodynamic restriction to occur, except the hydrogenation of the aromatic ring. The desirable reactions which remove oxygen without breaking C–C bonds were thermodynamically favored. The most stable molecules were dependent on both temperature and guaiacol concentration at feed.
[Display omitted]
•Gas-phase guaiacol hydrodeoxygenation thermodynamics analysis.•Thermodynamics models by Gibbs and equilibrium reactors.•Direct deoxygenation (DDO) reactions are favored thermodynamically.</description><subject>Chemical equilibrium</subject><subject>Fast pyrolysis</subject><subject>Guaiacol</subject><subject>Thermodynamic analysis</subject><subject>Vapor phase hydrodeoxygenation (HDO)</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFbfwEVeIPFOfuZnI0hRKxTc1PUwmblppiSZOpMW8_am1LWcA2dzz-HyEfJIIaNA2dM-CzjMynKgMoPZlbwiCyq4TIGJ_JosQDJIaSnoLbmLcQ9AK8HLBdluWwy9t9Oge2cS_D66ztXBHftED7qboouJb5KxxeSkDz4kh1ZHTNrJBm_R_0w7HPTo_HC-2h2108Z39-Sm0V3Eh79ckq-31-1qnW4-3z9WL5vUFGUxpqUsGRe2ri2wQvICKLKS0twIyWktKwsV8LyGpmI2l7bWoHVVWEFBQKORF0tSXnZN8DEGbNQhuF6HSVFQZzJqry5k1JmMgtmVnGvPlxrOv50cBhWNw8GgdQHNqKx3_w_8At1Db_I</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Silva, Nathacha Kare Gonçalves</creator><creator>Ribas, Rogério Marques</creator><creator>Monteiro, Robson Souza</creator><creator>Barrozo, Marcos Antônio de Souza</creator><creator>Soares, Ricardo Reis</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1892-5311</orcidid><orcidid>https://orcid.org/0000-0002-8873-162X</orcidid></search><sort><creationdate>20200301</creationdate><title>Thermodynamic equilibrium analysis of the vapor phase hydrodeoxygenation of guaiacol</title><author>Silva, Nathacha Kare Gonçalves ; Ribas, Rogério Marques ; Monteiro, Robson Souza ; Barrozo, Marcos Antônio de Souza ; Soares, Ricardo Reis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-494678dbbd06397301e64112c8971b95d05072b0f56d29dba0aa53d81080fae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical equilibrium</topic><topic>Fast pyrolysis</topic><topic>Guaiacol</topic><topic>Thermodynamic analysis</topic><topic>Vapor phase hydrodeoxygenation (HDO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Nathacha Kare Gonçalves</creatorcontrib><creatorcontrib>Ribas, Rogério Marques</creatorcontrib><creatorcontrib>Monteiro, Robson Souza</creatorcontrib><creatorcontrib>Barrozo, Marcos Antônio de Souza</creatorcontrib><creatorcontrib>Soares, Ricardo Reis</creatorcontrib><collection>CrossRef</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Nathacha Kare Gonçalves</au><au>Ribas, Rogério Marques</au><au>Monteiro, Robson Souza</au><au>Barrozo, Marcos Antônio de Souza</au><au>Soares, Ricardo Reis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic equilibrium analysis of the vapor phase hydrodeoxygenation of guaiacol</atitle><jtitle>Renewable energy</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>147</volume><spage>947</spage><epage>956</epage><pages>947-956</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Vapor phase hydrodeoxygenation (HDO) is a prospective route for upgrading the downstream products derived from fast pyrolysis of lignocellulosic biomass. The objective is to produce transportation fuel or value-added chemicals using a sustainable feedstock. This work reports a thermodynamic chemical equilibrium analysis of the vapor phase HDO of guaiacol (2-methoxyphenol), model compound representative of the lignin portion of biomass,. The chemical equilibrium was determined by simulation in the temperature range of 500–1000 K, 1 atm, and using an isothermal equilibrium reactor. These conditions were chosen to match the atmospheric HDO of guaiacol studies. The equilibrium constant and the equilibrium conversion values determined may help on the explanation of reaction pathways of the catalytic HDO of guaiacol. Most of the reactions behaved exothermically and did not show thermodynamic restriction to occur, except the hydrogenation of the aromatic ring. The desirable reactions which remove oxygen without breaking C–C bonds were thermodynamically favored. The most stable molecules were dependent on both temperature and guaiacol concentration at feed.
[Display omitted]
•Gas-phase guaiacol hydrodeoxygenation thermodynamics analysis.•Thermodynamics models by Gibbs and equilibrium reactors.•Direct deoxygenation (DDO) reactions are favored thermodynamically.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2019.09.059</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1892-5311</orcidid><orcidid>https://orcid.org/0000-0002-8873-162X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1481 |
ispartof | Renewable energy, 2020-03, Vol.147, p.947-956 |
issn | 0960-1481 1879-0682 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_renene_2019_09_059 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Chemical equilibrium Fast pyrolysis Guaiacol Thermodynamic analysis Vapor phase hydrodeoxygenation (HDO) |
title | Thermodynamic equilibrium analysis of the vapor phase hydrodeoxygenation of guaiacol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20equilibrium%20analysis%20of%20the%20vapor%20phase%20hydrodeoxygenation%20of%20guaiacol&rft.jtitle=Renewable%20energy&rft.au=Silva,%20Nathacha%20Kare%20Gon%C3%A7alves&rft.date=2020-03-01&rft.volume=147&rft.spage=947&rft.epage=956&rft.pages=947-956&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2019.09.059&rft_dat=%3Celsevier_cross%3ES0960148119313898%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0960148119313898&rfr_iscdi=true |