Thermodynamic equilibrium analysis of the vapor phase hydrodeoxygenation of guaiacol

Vapor phase hydrodeoxygenation (HDO) is a prospective route for upgrading the downstream products derived from fast pyrolysis of lignocellulosic biomass. The objective is to produce transportation fuel or value-added chemicals using a sustainable feedstock. This work reports a thermodynamic chemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2020-03, Vol.147, p.947-956
Hauptverfasser: Silva, Nathacha Kare Gonçalves, Ribas, Rogério Marques, Monteiro, Robson Souza, Barrozo, Marcos Antônio de Souza, Soares, Ricardo Reis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 956
container_issue
container_start_page 947
container_title Renewable energy
container_volume 147
creator Silva, Nathacha Kare Gonçalves
Ribas, Rogério Marques
Monteiro, Robson Souza
Barrozo, Marcos Antônio de Souza
Soares, Ricardo Reis
description Vapor phase hydrodeoxygenation (HDO) is a prospective route for upgrading the downstream products derived from fast pyrolysis of lignocellulosic biomass. The objective is to produce transportation fuel or value-added chemicals using a sustainable feedstock. This work reports a thermodynamic chemical equilibrium analysis of the vapor phase HDO of guaiacol (2-methoxyphenol), model compound representative of the lignin portion of biomass,. The chemical equilibrium was determined by simulation in the temperature range of 500–1000 K, 1 atm, and using an isothermal equilibrium reactor. These conditions were chosen to match the atmospheric HDO of guaiacol studies. The equilibrium constant and the equilibrium conversion values determined may help on the explanation of reaction pathways of the catalytic HDO of guaiacol. Most of the reactions behaved exothermically and did not show thermodynamic restriction to occur, except the hydrogenation of the aromatic ring. The desirable reactions which remove oxygen without breaking C–C bonds were thermodynamically favored. The most stable molecules were dependent on both temperature and guaiacol concentration at feed. [Display omitted] •Gas-phase guaiacol hydrodeoxygenation thermodynamics analysis.•Thermodynamics models by Gibbs and equilibrium reactors.•Direct deoxygenation (DDO) reactions are favored thermodynamically.
doi_str_mv 10.1016/j.renene.2019.09.059
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_renene_2019_09_059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148119313898</els_id><sourcerecordid>S0960148119313898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-494678dbbd06397301e64112c8971b95d05072b0f56d29dba0aa53d81080fae73</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFbfwEVeIPFOfuZnI0hRKxTc1PUwmblppiSZOpMW8_am1LWcA2dzz-HyEfJIIaNA2dM-CzjMynKgMoPZlbwiCyq4TIGJ_JosQDJIaSnoLbmLcQ9AK8HLBdluWwy9t9Oge2cS_D66ztXBHftED7qboouJb5KxxeSkDz4kh1ZHTNrJBm_R_0w7HPTo_HC-2h2108Z39-Sm0V3Eh79ckq-31-1qnW4-3z9WL5vUFGUxpqUsGRe2ri2wQvICKLKS0twIyWktKwsV8LyGpmI2l7bWoHVVWEFBQKORF0tSXnZN8DEGbNQhuF6HSVFQZzJqry5k1JmMgtmVnGvPlxrOv50cBhWNw8GgdQHNqKx3_w_8At1Db_I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermodynamic equilibrium analysis of the vapor phase hydrodeoxygenation of guaiacol</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Silva, Nathacha Kare Gonçalves ; Ribas, Rogério Marques ; Monteiro, Robson Souza ; Barrozo, Marcos Antônio de Souza ; Soares, Ricardo Reis</creator><creatorcontrib>Silva, Nathacha Kare Gonçalves ; Ribas, Rogério Marques ; Monteiro, Robson Souza ; Barrozo, Marcos Antônio de Souza ; Soares, Ricardo Reis</creatorcontrib><description>Vapor phase hydrodeoxygenation (HDO) is a prospective route for upgrading the downstream products derived from fast pyrolysis of lignocellulosic biomass. The objective is to produce transportation fuel or value-added chemicals using a sustainable feedstock. This work reports a thermodynamic chemical equilibrium analysis of the vapor phase HDO of guaiacol (2-methoxyphenol), model compound representative of the lignin portion of biomass,. The chemical equilibrium was determined by simulation in the temperature range of 500–1000 K, 1 atm, and using an isothermal equilibrium reactor. These conditions were chosen to match the atmospheric HDO of guaiacol studies. The equilibrium constant and the equilibrium conversion values determined may help on the explanation of reaction pathways of the catalytic HDO of guaiacol. Most of the reactions behaved exothermically and did not show thermodynamic restriction to occur, except the hydrogenation of the aromatic ring. The desirable reactions which remove oxygen without breaking C–C bonds were thermodynamically favored. The most stable molecules were dependent on both temperature and guaiacol concentration at feed. [Display omitted] •Gas-phase guaiacol hydrodeoxygenation thermodynamics analysis.•Thermodynamics models by Gibbs and equilibrium reactors.•Direct deoxygenation (DDO) reactions are favored thermodynamically.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2019.09.059</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical equilibrium ; Fast pyrolysis ; Guaiacol ; Thermodynamic analysis ; Vapor phase hydrodeoxygenation (HDO)</subject><ispartof>Renewable energy, 2020-03, Vol.147, p.947-956</ispartof><rights>2019 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-494678dbbd06397301e64112c8971b95d05072b0f56d29dba0aa53d81080fae73</citedby><cites>FETCH-LOGICAL-c343t-494678dbbd06397301e64112c8971b95d05072b0f56d29dba0aa53d81080fae73</cites><orcidid>0000-0003-1892-5311 ; 0000-0002-8873-162X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.renene.2019.09.059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Silva, Nathacha Kare Gonçalves</creatorcontrib><creatorcontrib>Ribas, Rogério Marques</creatorcontrib><creatorcontrib>Monteiro, Robson Souza</creatorcontrib><creatorcontrib>Barrozo, Marcos Antônio de Souza</creatorcontrib><creatorcontrib>Soares, Ricardo Reis</creatorcontrib><title>Thermodynamic equilibrium analysis of the vapor phase hydrodeoxygenation of guaiacol</title><title>Renewable energy</title><description>Vapor phase hydrodeoxygenation (HDO) is a prospective route for upgrading the downstream products derived from fast pyrolysis of lignocellulosic biomass. The objective is to produce transportation fuel or value-added chemicals using a sustainable feedstock. This work reports a thermodynamic chemical equilibrium analysis of the vapor phase HDO of guaiacol (2-methoxyphenol), model compound representative of the lignin portion of biomass,. The chemical equilibrium was determined by simulation in the temperature range of 500–1000 K, 1 atm, and using an isothermal equilibrium reactor. These conditions were chosen to match the atmospheric HDO of guaiacol studies. The equilibrium constant and the equilibrium conversion values determined may help on the explanation of reaction pathways of the catalytic HDO of guaiacol. Most of the reactions behaved exothermically and did not show thermodynamic restriction to occur, except the hydrogenation of the aromatic ring. The desirable reactions which remove oxygen without breaking C–C bonds were thermodynamically favored. The most stable molecules were dependent on both temperature and guaiacol concentration at feed. [Display omitted] •Gas-phase guaiacol hydrodeoxygenation thermodynamics analysis.•Thermodynamics models by Gibbs and equilibrium reactors.•Direct deoxygenation (DDO) reactions are favored thermodynamically.</description><subject>Chemical equilibrium</subject><subject>Fast pyrolysis</subject><subject>Guaiacol</subject><subject>Thermodynamic analysis</subject><subject>Vapor phase hydrodeoxygenation (HDO)</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFbfwEVeIPFOfuZnI0hRKxTc1PUwmblppiSZOpMW8_am1LWcA2dzz-HyEfJIIaNA2dM-CzjMynKgMoPZlbwiCyq4TIGJ_JosQDJIaSnoLbmLcQ9AK8HLBdluWwy9t9Oge2cS_D66ztXBHftED7qboouJb5KxxeSkDz4kh1ZHTNrJBm_R_0w7HPTo_HC-2h2108Z39-Sm0V3Eh79ckq-31-1qnW4-3z9WL5vUFGUxpqUsGRe2ri2wQvICKLKS0twIyWktKwsV8LyGpmI2l7bWoHVVWEFBQKORF0tSXnZN8DEGbNQhuF6HSVFQZzJqry5k1JmMgtmVnGvPlxrOv50cBhWNw8GgdQHNqKx3_w_8At1Db_I</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Silva, Nathacha Kare Gonçalves</creator><creator>Ribas, Rogério Marques</creator><creator>Monteiro, Robson Souza</creator><creator>Barrozo, Marcos Antônio de Souza</creator><creator>Soares, Ricardo Reis</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1892-5311</orcidid><orcidid>https://orcid.org/0000-0002-8873-162X</orcidid></search><sort><creationdate>20200301</creationdate><title>Thermodynamic equilibrium analysis of the vapor phase hydrodeoxygenation of guaiacol</title><author>Silva, Nathacha Kare Gonçalves ; Ribas, Rogério Marques ; Monteiro, Robson Souza ; Barrozo, Marcos Antônio de Souza ; Soares, Ricardo Reis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-494678dbbd06397301e64112c8971b95d05072b0f56d29dba0aa53d81080fae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical equilibrium</topic><topic>Fast pyrolysis</topic><topic>Guaiacol</topic><topic>Thermodynamic analysis</topic><topic>Vapor phase hydrodeoxygenation (HDO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Nathacha Kare Gonçalves</creatorcontrib><creatorcontrib>Ribas, Rogério Marques</creatorcontrib><creatorcontrib>Monteiro, Robson Souza</creatorcontrib><creatorcontrib>Barrozo, Marcos Antônio de Souza</creatorcontrib><creatorcontrib>Soares, Ricardo Reis</creatorcontrib><collection>CrossRef</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Nathacha Kare Gonçalves</au><au>Ribas, Rogério Marques</au><au>Monteiro, Robson Souza</au><au>Barrozo, Marcos Antônio de Souza</au><au>Soares, Ricardo Reis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic equilibrium analysis of the vapor phase hydrodeoxygenation of guaiacol</atitle><jtitle>Renewable energy</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>147</volume><spage>947</spage><epage>956</epage><pages>947-956</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Vapor phase hydrodeoxygenation (HDO) is a prospective route for upgrading the downstream products derived from fast pyrolysis of lignocellulosic biomass. The objective is to produce transportation fuel or value-added chemicals using a sustainable feedstock. This work reports a thermodynamic chemical equilibrium analysis of the vapor phase HDO of guaiacol (2-methoxyphenol), model compound representative of the lignin portion of biomass,. The chemical equilibrium was determined by simulation in the temperature range of 500–1000 K, 1 atm, and using an isothermal equilibrium reactor. These conditions were chosen to match the atmospheric HDO of guaiacol studies. The equilibrium constant and the equilibrium conversion values determined may help on the explanation of reaction pathways of the catalytic HDO of guaiacol. Most of the reactions behaved exothermically and did not show thermodynamic restriction to occur, except the hydrogenation of the aromatic ring. The desirable reactions which remove oxygen without breaking C–C bonds were thermodynamically favored. The most stable molecules were dependent on both temperature and guaiacol concentration at feed. [Display omitted] •Gas-phase guaiacol hydrodeoxygenation thermodynamics analysis.•Thermodynamics models by Gibbs and equilibrium reactors.•Direct deoxygenation (DDO) reactions are favored thermodynamically.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2019.09.059</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1892-5311</orcidid><orcidid>https://orcid.org/0000-0002-8873-162X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2020-03, Vol.147, p.947-956
issn 0960-1481
1879-0682
language eng
recordid cdi_crossref_primary_10_1016_j_renene_2019_09_059
source ScienceDirect Journals (5 years ago - present)
subjects Chemical equilibrium
Fast pyrolysis
Guaiacol
Thermodynamic analysis
Vapor phase hydrodeoxygenation (HDO)
title Thermodynamic equilibrium analysis of the vapor phase hydrodeoxygenation of guaiacol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20equilibrium%20analysis%20of%20the%20vapor%20phase%20hydrodeoxygenation%20of%20guaiacol&rft.jtitle=Renewable%20energy&rft.au=Silva,%20Nathacha%20Kare%20Gon%C3%A7alves&rft.date=2020-03-01&rft.volume=147&rft.spage=947&rft.epage=956&rft.pages=947-956&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2019.09.059&rft_dat=%3Celsevier_cross%3ES0960148119313898%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0960148119313898&rfr_iscdi=true