The miR‐193a‐3p‐MAP3k3 Signaling Axis Regulates Substrate Topography‐Induced Osteogenesis of Bone Marrow Stem Cells

Substrate topographical features induce osteogenic differentiation of bone marrow stem cells (BMSCs), but the underlying mechanisms are unclear. As microRNAs (miRNAs) play key roles in osteogenesis and bone regeneration, it would be meaningful to elucidate the roles of miRNAs in the intracellular si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2020-01, Vol.7 (1), p.1901412-n/a, Article 1901412
Hauptverfasser: Lv, Yan, Huang, Ying, Xu, Mingming, Heng, Boon Chin, Yang, Congchong, Cao, Cen, Hu, Zhewen, Liu, Wenwen, Chi, Xiaopei, Gao, Min, Zhang, Xuehui, Wei, Yan, Deng, Xuliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page 1901412
container_title Advanced science
container_volume 7
creator Lv, Yan
Huang, Ying
Xu, Mingming
Heng, Boon Chin
Yang, Congchong
Cao, Cen
Hu, Zhewen
Liu, Wenwen
Chi, Xiaopei
Gao, Min
Zhang, Xuehui
Wei, Yan
Deng, Xuliang
description Substrate topographical features induce osteogenic differentiation of bone marrow stem cells (BMSCs), but the underlying mechanisms are unclear. As microRNAs (miRNAs) play key roles in osteogenesis and bone regeneration, it would be meaningful to elucidate the roles of miRNAs in the intracellular signaling cascade of topographical cue‐induced osteogenic differentiation. In this study, the miRNA expression profile of the topographical feature‐induced osteogenic differentiation group is different from that of the chemical‐factors‐induced osteogenic differentiation group. miR‐193a‐3p is sensitive to substrate topographical features and its downregulation enhances osteogenic differentiation only in the absence of osteogenesis−inducing medium. Also, substrate topographical features specifically activate a nonclassical osteogenetic pathway—the mitogen‐activated protein kinase (MAPK) pathway. Loss‐ and gain‐of‐function experiments demonstrate that miR‐193a‐3p regulates the MAPK pathway by targeting the MAP3k3 gene. In conclusion, this data indicates that different osteogenic‐lineage‐related intracellular signaling cascades are triggered in BMSCs subjected to biophysical or chemical stimulation. Moreover, the miR‐193a‐3p‐MAP3k3 signaling axis plays a pivotal role in the transduction of biophysical cues from the substrate to regulate the osteogenic lineage specification of BMSCs, and hence may be a promising molecular target for bone regenerative therapies. Topographical feature‐induced bone marrow stem cells (BMSCs) lineage specification is different from that of chemical‐factors‐induced BMSCs lineage specification in terms of microRNA expression. MiR‐193a‐3p‐MAP3k3 signaling axis plays a pivotal role in the transduction of biophysical cues from the substrate to regulate the osteogenic differentiation of BMSCs. As an outlook, when designing implantable biomedical devices or orthopedic substitutes, more attention should be focused on their biophysical properties.
doi_str_mv 10.1002/advs.201901412
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000496027400001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4294026b46ef4a5c9fc0fdd25221e76e</doaj_id><sourcerecordid>2336248315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5299-a4fac0416cd20736b8eec24c9095a3bfa47b91dc6468599bb729f48b43fbead33</originalsourceid><addsrcrecordid>eNqNks1uEzEUhUcIRKvQLUs0EhsklOCfO57xBikNf5FaFTWBreXx3Jm6TMbBnmmp2PAIPCNPgtOEqGUDG_vK_s7Rte9JkqeUTCgh7JWursKEESoJBcoeJIeMymLMC4CHd-qD5CiES0IIzXgOtHicHHAqGc0yeph8X15gurLnv378pJLruPF1XE6nH_kXni5s0-nWdk06_WZDeo7N0OoeQ7oYytD7WKZLt3aN1-uLmyibd9VgsErPQo-uwQ5DVLk6PXYdpqfae3edLnpcpTNs2_AkeVTrNuDRbh8ln969Xc4-jE_O3s9n05OxyZiUYw21NgSoMBUjORdlgWgYGElkpnlZa8hLSSsjQBSZlGWZM1lDUQKvS9QV56NkvvWtnL5Ua29X2t8op626PXC-Udr31rSogEkgTJQgsAadGVkbUlcVyxijmAuMXq-3XuuhXGFlsIvf0N4zvX_T2QvVuCslJOR5bH-UvNgZePd1wNCrlQ0mfofu0A1BMc4Fg4LHYY2S53-hl27wcSC3FFAuRMEiNdlSxrsQPNb7ZihRm5ioTUzUPiZR8OzuE_b4n1BEoNgC11i6OhiLncE9FoMEUhCWA9lkamZ73VvXzdzQ9VH68v-lkYYdbVu8-Uffavrm84ICSP4bxL_tDw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334136682</pqid></control><display><type>article</type><title>The miR‐193a‐3p‐MAP3k3 Signaling Axis Regulates Substrate Topography‐Induced Osteogenesis of Bone Marrow Stem Cells</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Lv, Yan ; Huang, Ying ; Xu, Mingming ; Heng, Boon Chin ; Yang, Congchong ; Cao, Cen ; Hu, Zhewen ; Liu, Wenwen ; Chi, Xiaopei ; Gao, Min ; Zhang, Xuehui ; Wei, Yan ; Deng, Xuliang</creator><creatorcontrib>Lv, Yan ; Huang, Ying ; Xu, Mingming ; Heng, Boon Chin ; Yang, Congchong ; Cao, Cen ; Hu, Zhewen ; Liu, Wenwen ; Chi, Xiaopei ; Gao, Min ; Zhang, Xuehui ; Wei, Yan ; Deng, Xuliang</creatorcontrib><description>Substrate topographical features induce osteogenic differentiation of bone marrow stem cells (BMSCs), but the underlying mechanisms are unclear. As microRNAs (miRNAs) play key roles in osteogenesis and bone regeneration, it would be meaningful to elucidate the roles of miRNAs in the intracellular signaling cascade of topographical cue‐induced osteogenic differentiation. In this study, the miRNA expression profile of the topographical feature‐induced osteogenic differentiation group is different from that of the chemical‐factors‐induced osteogenic differentiation group. miR‐193a‐3p is sensitive to substrate topographical features and its downregulation enhances osteogenic differentiation only in the absence of osteogenesis−inducing medium. Also, substrate topographical features specifically activate a nonclassical osteogenetic pathway—the mitogen‐activated protein kinase (MAPK) pathway. Loss‐ and gain‐of‐function experiments demonstrate that miR‐193a‐3p regulates the MAPK pathway by targeting the MAP3k3 gene. In conclusion, this data indicates that different osteogenic‐lineage‐related intracellular signaling cascades are triggered in BMSCs subjected to biophysical or chemical stimulation. Moreover, the miR‐193a‐3p‐MAP3k3 signaling axis plays a pivotal role in the transduction of biophysical cues from the substrate to regulate the osteogenic lineage specification of BMSCs, and hence may be a promising molecular target for bone regenerative therapies. Topographical feature‐induced bone marrow stem cells (BMSCs) lineage specification is different from that of chemical‐factors‐induced BMSCs lineage specification in terms of microRNA expression. MiR‐193a‐3p‐MAP3k3 signaling axis plays a pivotal role in the transduction of biophysical cues from the substrate to regulate the osteogenic differentiation of BMSCs. As an outlook, when designing implantable biomedical devices or orthopedic substitutes, more attention should be focused on their biophysical properties.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.201901412</identifier><identifier>PMID: 31921551</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Biomedical materials ; biophysical cues induced‐osteogenic differentiation ; Bone marrow ; Chemistry ; Chemistry, Multidisciplinary ; Defects ; Gene expression ; Investigations ; Materials Science ; Materials Science, Multidisciplinary ; MicroRNAs ; miR‐193a‐3p‐MAP3k3 signaling axis ; Morphology ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Principal components analysis ; Protein expression ; Proteins ; Scanning electron microscopy ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Stem cells ; Technology ; topographical cues ; Topography ; Variance analysis</subject><ispartof>Advanced science, 2020-01, Vol.7 (1), p.1901412-n/a, Article 1901412</ispartof><rights>2019 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>25</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000496027400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5299-a4fac0416cd20736b8eec24c9095a3bfa47b91dc6468599bb729f48b43fbead33</citedby><cites>FETCH-LOGICAL-c5299-a4fac0416cd20736b8eec24c9095a3bfa47b91dc6468599bb729f48b43fbead33</cites><orcidid>0000-0003-1838-6274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947707/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947707/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,2103,2115,11567,27929,27930,28253,45579,45580,46057,46481,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31921551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Yan</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Xu, Mingming</creatorcontrib><creatorcontrib>Heng, Boon Chin</creatorcontrib><creatorcontrib>Yang, Congchong</creatorcontrib><creatorcontrib>Cao, Cen</creatorcontrib><creatorcontrib>Hu, Zhewen</creatorcontrib><creatorcontrib>Liu, Wenwen</creatorcontrib><creatorcontrib>Chi, Xiaopei</creatorcontrib><creatorcontrib>Gao, Min</creatorcontrib><creatorcontrib>Zhang, Xuehui</creatorcontrib><creatorcontrib>Wei, Yan</creatorcontrib><creatorcontrib>Deng, Xuliang</creatorcontrib><title>The miR‐193a‐3p‐MAP3k3 Signaling Axis Regulates Substrate Topography‐Induced Osteogenesis of Bone Marrow Stem Cells</title><title>Advanced science</title><addtitle>ADV SCI</addtitle><addtitle>Adv Sci (Weinh)</addtitle><description>Substrate topographical features induce osteogenic differentiation of bone marrow stem cells (BMSCs), but the underlying mechanisms are unclear. As microRNAs (miRNAs) play key roles in osteogenesis and bone regeneration, it would be meaningful to elucidate the roles of miRNAs in the intracellular signaling cascade of topographical cue‐induced osteogenic differentiation. In this study, the miRNA expression profile of the topographical feature‐induced osteogenic differentiation group is different from that of the chemical‐factors‐induced osteogenic differentiation group. miR‐193a‐3p is sensitive to substrate topographical features and its downregulation enhances osteogenic differentiation only in the absence of osteogenesis−inducing medium. Also, substrate topographical features specifically activate a nonclassical osteogenetic pathway—the mitogen‐activated protein kinase (MAPK) pathway. Loss‐ and gain‐of‐function experiments demonstrate that miR‐193a‐3p regulates the MAPK pathway by targeting the MAP3k3 gene. In conclusion, this data indicates that different osteogenic‐lineage‐related intracellular signaling cascades are triggered in BMSCs subjected to biophysical or chemical stimulation. Moreover, the miR‐193a‐3p‐MAP3k3 signaling axis plays a pivotal role in the transduction of biophysical cues from the substrate to regulate the osteogenic lineage specification of BMSCs, and hence may be a promising molecular target for bone regenerative therapies. Topographical feature‐induced bone marrow stem cells (BMSCs) lineage specification is different from that of chemical‐factors‐induced BMSCs lineage specification in terms of microRNA expression. MiR‐193a‐3p‐MAP3k3 signaling axis plays a pivotal role in the transduction of biophysical cues from the substrate to regulate the osteogenic differentiation of BMSCs. As an outlook, when designing implantable biomedical devices or orthopedic substitutes, more attention should be focused on their biophysical properties.</description><subject>Biomedical materials</subject><subject>biophysical cues induced‐osteogenic differentiation</subject><subject>Bone marrow</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Defects</subject><subject>Gene expression</subject><subject>Investigations</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>MicroRNAs</subject><subject>miR‐193a‐3p‐MAP3k3 signaling axis</subject><subject>Morphology</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Principal components analysis</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Scanning electron microscopy</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Stem cells</subject><subject>Technology</subject><subject>topographical cues</subject><subject>Topography</subject><subject>Variance analysis</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1uEzEUhUcIRKvQLUs0EhsklOCfO57xBikNf5FaFTWBreXx3Jm6TMbBnmmp2PAIPCNPgtOEqGUDG_vK_s7Rte9JkqeUTCgh7JWursKEESoJBcoeJIeMymLMC4CHd-qD5CiES0IIzXgOtHicHHAqGc0yeph8X15gurLnv378pJLruPF1XE6nH_kXni5s0-nWdk06_WZDeo7N0OoeQ7oYytD7WKZLt3aN1-uLmyibd9VgsErPQo-uwQ5DVLk6PXYdpqfae3edLnpcpTNs2_AkeVTrNuDRbh8ln969Xc4-jE_O3s9n05OxyZiUYw21NgSoMBUjORdlgWgYGElkpnlZa8hLSSsjQBSZlGWZM1lDUQKvS9QV56NkvvWtnL5Ua29X2t8op626PXC-Udr31rSogEkgTJQgsAadGVkbUlcVyxijmAuMXq-3XuuhXGFlsIvf0N4zvX_T2QvVuCslJOR5bH-UvNgZePd1wNCrlQ0mfofu0A1BMc4Fg4LHYY2S53-hl27wcSC3FFAuRMEiNdlSxrsQPNb7ZihRm5ioTUzUPiZR8OzuE_b4n1BEoNgC11i6OhiLncE9FoMEUhCWA9lkamZ73VvXzdzQ9VH68v-lkYYdbVu8-Uffavrm84ICSP4bxL_tDw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Lv, Yan</creator><creator>Huang, Ying</creator><creator>Xu, Mingming</creator><creator>Heng, Boon Chin</creator><creator>Yang, Congchong</creator><creator>Cao, Cen</creator><creator>Hu, Zhewen</creator><creator>Liu, Wenwen</creator><creator>Chi, Xiaopei</creator><creator>Gao, Min</creator><creator>Zhang, Xuehui</creator><creator>Wei, Yan</creator><creator>Deng, Xuliang</creator><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1838-6274</orcidid></search><sort><creationdate>20200101</creationdate><title>The miR‐193a‐3p‐MAP3k3 Signaling Axis Regulates Substrate Topography‐Induced Osteogenesis of Bone Marrow Stem Cells</title><author>Lv, Yan ; Huang, Ying ; Xu, Mingming ; Heng, Boon Chin ; Yang, Congchong ; Cao, Cen ; Hu, Zhewen ; Liu, Wenwen ; Chi, Xiaopei ; Gao, Min ; Zhang, Xuehui ; Wei, Yan ; Deng, Xuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5299-a4fac0416cd20736b8eec24c9095a3bfa47b91dc6468599bb729f48b43fbead33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical materials</topic><topic>biophysical cues induced‐osteogenic differentiation</topic><topic>Bone marrow</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Defects</topic><topic>Gene expression</topic><topic>Investigations</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>MicroRNAs</topic><topic>miR‐193a‐3p‐MAP3k3 signaling axis</topic><topic>Morphology</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Principal components analysis</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Scanning electron microscopy</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Stem cells</topic><topic>Technology</topic><topic>topographical cues</topic><topic>Topography</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Yan</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Xu, Mingming</creatorcontrib><creatorcontrib>Heng, Boon Chin</creatorcontrib><creatorcontrib>Yang, Congchong</creatorcontrib><creatorcontrib>Cao, Cen</creatorcontrib><creatorcontrib>Hu, Zhewen</creatorcontrib><creatorcontrib>Liu, Wenwen</creatorcontrib><creatorcontrib>Chi, Xiaopei</creatorcontrib><creatorcontrib>Gao, Min</creatorcontrib><creatorcontrib>Zhang, Xuehui</creatorcontrib><creatorcontrib>Wei, Yan</creatorcontrib><creatorcontrib>Deng, Xuliang</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Yan</au><au>Huang, Ying</au><au>Xu, Mingming</au><au>Heng, Boon Chin</au><au>Yang, Congchong</au><au>Cao, Cen</au><au>Hu, Zhewen</au><au>Liu, Wenwen</au><au>Chi, Xiaopei</au><au>Gao, Min</au><au>Zhang, Xuehui</au><au>Wei, Yan</au><au>Deng, Xuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The miR‐193a‐3p‐MAP3k3 Signaling Axis Regulates Substrate Topography‐Induced Osteogenesis of Bone Marrow Stem Cells</atitle><jtitle>Advanced science</jtitle><stitle>ADV SCI</stitle><addtitle>Adv Sci (Weinh)</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>1901412</spage><epage>n/a</epage><pages>1901412-n/a</pages><artnum>1901412</artnum><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Substrate topographical features induce osteogenic differentiation of bone marrow stem cells (BMSCs), but the underlying mechanisms are unclear. As microRNAs (miRNAs) play key roles in osteogenesis and bone regeneration, it would be meaningful to elucidate the roles of miRNAs in the intracellular signaling cascade of topographical cue‐induced osteogenic differentiation. In this study, the miRNA expression profile of the topographical feature‐induced osteogenic differentiation group is different from that of the chemical‐factors‐induced osteogenic differentiation group. miR‐193a‐3p is sensitive to substrate topographical features and its downregulation enhances osteogenic differentiation only in the absence of osteogenesis−inducing medium. Also, substrate topographical features specifically activate a nonclassical osteogenetic pathway—the mitogen‐activated protein kinase (MAPK) pathway. Loss‐ and gain‐of‐function experiments demonstrate that miR‐193a‐3p regulates the MAPK pathway by targeting the MAP3k3 gene. In conclusion, this data indicates that different osteogenic‐lineage‐related intracellular signaling cascades are triggered in BMSCs subjected to biophysical or chemical stimulation. Moreover, the miR‐193a‐3p‐MAP3k3 signaling axis plays a pivotal role in the transduction of biophysical cues from the substrate to regulate the osteogenic lineage specification of BMSCs, and hence may be a promising molecular target for bone regenerative therapies. Topographical feature‐induced bone marrow stem cells (BMSCs) lineage specification is different from that of chemical‐factors‐induced BMSCs lineage specification in terms of microRNA expression. MiR‐193a‐3p‐MAP3k3 signaling axis plays a pivotal role in the transduction of biophysical cues from the substrate to regulate the osteogenic differentiation of BMSCs. As an outlook, when designing implantable biomedical devices or orthopedic substitutes, more attention should be focused on their biophysical properties.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>31921551</pmid><doi>10.1002/advs.201901412</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1838-6274</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2020-01, Vol.7 (1), p.1901412-n/a, Article 1901412
issn 2198-3844
2198-3844
language eng
recordid cdi_webofscience_primary_000496027400001CitationCount
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection); PubMed Central
subjects Biomedical materials
biophysical cues induced‐osteogenic differentiation
Bone marrow
Chemistry
Chemistry, Multidisciplinary
Defects
Gene expression
Investigations
Materials Science
Materials Science, Multidisciplinary
MicroRNAs
miR‐193a‐3p‐MAP3k3 signaling axis
Morphology
Nanoscience & Nanotechnology
Physical Sciences
Principal components analysis
Protein expression
Proteins
Scanning electron microscopy
Science & Technology
Science & Technology - Other Topics
Stem cells
Technology
topographical cues
Topography
Variance analysis
title The miR‐193a‐3p‐MAP3k3 Signaling Axis Regulates Substrate Topography‐Induced Osteogenesis of Bone Marrow Stem Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20miR%E2%80%90193a%E2%80%903p%E2%80%90MAP3k3%20Signaling%20Axis%20Regulates%20Substrate%20Topography%E2%80%90Induced%20Osteogenesis%20of%20Bone%20Marrow%20Stem%20Cells&rft.jtitle=Advanced%20science&rft.au=Lv,%20Yan&rft.date=2020-01-01&rft.volume=7&rft.issue=1&rft.spage=1901412&rft.epage=n/a&rft.pages=1901412-n/a&rft.artnum=1901412&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.201901412&rft_dat=%3Cproquest_webof%3E2336248315%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334136682&rft_id=info:pmid/31921551&rft_doaj_id=oai_doaj_org_article_4294026b46ef4a5c9fc0fdd25221e76e&rfr_iscdi=true