Enhanced Thermoelectric Performance of Cu-incorporated Bi0.5Sb1.5Te3 by Melt Spinning and Spark Plasma Sintering
Incorporation of a foreign element is considered as a promising approach to enhance the performance of thermoelectric materials since this can either improve the power factor by a band structure modification or reduce the thermal conductivity by a phonon scattering strengthening. We fabricated the p...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2020-05, Vol.49 (5), p.2789-2793 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2793 |
---|---|
container_issue | 5 |
container_start_page | 2789 |
container_title | Journal of electronic materials |
container_volume | 49 |
creator | Cho, Hyun-jun Kim, Hyun-sik Kim, Minyoung Lee, Kyu Hyoung Kim, Sung Wng Kim, Sang-il |
description | Incorporation of a foreign element is considered as a promising approach to enhance the performance of thermoelectric materials since this can either improve the power factor by a band structure modification or reduce the thermal conductivity by a phonon scattering strengthening. We fabricated the polycrystalline bulk samples of Cu-incorporated Bi
0.5
Sb
1.5
Te
3
by melt spinning and spark plasma sintering, and evaluated the electronic and thermal transport properties. From the phase analysis and thermoelectric properties measurement, we found that most of the added excess Cu atoms were substituted at a Sb-site and a small amount of Cu was intercalated at the van der Waals gap between quintuple layers. By the formation of two different point defects (substituted Cu and intercalated Cu), the thermoelectric power factor was enhanced because of the increased density of states effective mass, and simultaneously reduced thermal conductivity originated from the intensified phonon scattering and suppressed bipolar contribution. Maximum thermoelectric figure of merit
zT
of 1.13 was obtained at 400 K. |
doi_str_mv | 10.1007/s11664-019-07772-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000495945800010CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385583603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-67fe97fe1430c315a9809a5fe4efd8be427926e88aeefe5a08ded10fbaf3d7113</originalsourceid><addsrcrecordid>eNqNkE2LFDEQhhtRcFz9A54CHiWzVZ1Od_qozfoBKy7MCN5CurviZp1J2iSD7L83Yy96Ew8hKep5k8pTVS8RtgjQXSbEtm04YM-h67qa94-qDcpGcFTt18fVBkSLXNZCPq2epXQHgBIVbqrlyt8aP9HM9rcUj4EONOXoJnZD0YZ4PPdYsGw4ceenEJcQTS70WwdbuRtxK_ck2HjPPtEhs93ivHf-GzN-LoWJ39nNwaSjYTvnM8XSel49seaQ6MXDflF9eXe1Hz7w68_vPw5vrvkkZJt521nqy8JGwCRQml5Bb6SlhuysRmrqrq9bUsoQWZIG1Ewzgh2NFXOHKC6qV-u9Sww_TpSyvgun6MuTuhZKSiVaEIWqV2qKIaVIVi_RHU281wj6bFavZnUxq3-b1X0JqTX0k8Zg0-SoSPoTBICml30jVTkhDC6b7IIfwsnnEn39_9FCi5VOy1kdxb9_-Md4vwDIoJz3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385583603</pqid></control><display><type>article</type><title>Enhanced Thermoelectric Performance of Cu-incorporated Bi0.5Sb1.5Te3 by Melt Spinning and Spark Plasma Sintering</title><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>SpringerLink Journals - AutoHoldings</source><creator>Cho, Hyun-jun ; Kim, Hyun-sik ; Kim, Minyoung ; Lee, Kyu Hyoung ; Kim, Sung Wng ; Kim, Sang-il</creator><creatorcontrib>Cho, Hyun-jun ; Kim, Hyun-sik ; Kim, Minyoung ; Lee, Kyu Hyoung ; Kim, Sung Wng ; Kim, Sang-il</creatorcontrib><description>Incorporation of a foreign element is considered as a promising approach to enhance the performance of thermoelectric materials since this can either improve the power factor by a band structure modification or reduce the thermal conductivity by a phonon scattering strengthening. We fabricated the polycrystalline bulk samples of Cu-incorporated Bi
0.5
Sb
1.5
Te
3
by melt spinning and spark plasma sintering, and evaluated the electronic and thermal transport properties. From the phase analysis and thermoelectric properties measurement, we found that most of the added excess Cu atoms were substituted at a Sb-site and a small amount of Cu was intercalated at the van der Waals gap between quintuple layers. By the formation of two different point defects (substituted Cu and intercalated Cu), the thermoelectric power factor was enhanced because of the increased density of states effective mass, and simultaneously reduced thermal conductivity originated from the intensified phonon scattering and suppressed bipolar contribution. Maximum thermoelectric figure of merit
zT
of 1.13 was obtained at 400 K.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07772-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electronics and Microelectronics ; Engineering ; Engineering, Electrical & Electronic ; Figure of merit ; Heat conductivity ; Heat transfer ; Instrumentation ; Materials Science ; Materials Science, Multidisciplinary ; Melt spinning ; Optical and Electronic Materials ; Phonons ; Physical Sciences ; Physics ; Physics, Applied ; Plasma sintering ; Point defects ; Power factor ; Scattering ; Science & Technology ; Solid State Physics ; Spark plasma sintering ; Substitutes ; Technology ; Thermal conductivity ; Thermoelectric materials ; Topical Collection: International Conference on Thermoelectrics 2019 ; Transport properties</subject><ispartof>Journal of electronic materials, 2020-05, Vol.49 (5), p.2789-2793</ispartof><rights>The Minerals, Metals & Materials Society 2019</rights><rights>The Minerals, Metals & Materials Society 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000495945800010</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c356t-67fe97fe1430c315a9809a5fe4efd8be427926e88aeefe5a08ded10fbaf3d7113</citedby><cites>FETCH-LOGICAL-c356t-67fe97fe1430c315a9809a5fe4efd8be427926e88aeefe5a08ded10fbaf3d7113</cites><orcidid>0000-0001-8934-4042 ; 0000-0002-4802-5421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-019-07772-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-019-07772-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Cho, Hyun-jun</creatorcontrib><creatorcontrib>Kim, Hyun-sik</creatorcontrib><creatorcontrib>Kim, Minyoung</creatorcontrib><creatorcontrib>Lee, Kyu Hyoung</creatorcontrib><creatorcontrib>Kim, Sung Wng</creatorcontrib><creatorcontrib>Kim, Sang-il</creatorcontrib><title>Enhanced Thermoelectric Performance of Cu-incorporated Bi0.5Sb1.5Te3 by Melt Spinning and Spark Plasma Sintering</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><addtitle>J ELECTRON MATER</addtitle><description>Incorporation of a foreign element is considered as a promising approach to enhance the performance of thermoelectric materials since this can either improve the power factor by a band structure modification or reduce the thermal conductivity by a phonon scattering strengthening. We fabricated the polycrystalline bulk samples of Cu-incorporated Bi
0.5
Sb
1.5
Te
3
by melt spinning and spark plasma sintering, and evaluated the electronic and thermal transport properties. From the phase analysis and thermoelectric properties measurement, we found that most of the added excess Cu atoms were substituted at a Sb-site and a small amount of Cu was intercalated at the van der Waals gap between quintuple layers. By the formation of two different point defects (substituted Cu and intercalated Cu), the thermoelectric power factor was enhanced because of the increased density of states effective mass, and simultaneously reduced thermal conductivity originated from the intensified phonon scattering and suppressed bipolar contribution. Maximum thermoelectric figure of merit
zT
of 1.13 was obtained at 400 K.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Figure of merit</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Melt spinning</subject><subject>Optical and Electronic Materials</subject><subject>Phonons</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Plasma sintering</subject><subject>Point defects</subject><subject>Power factor</subject><subject>Scattering</subject><subject>Science & Technology</subject><subject>Solid State Physics</subject><subject>Spark plasma sintering</subject><subject>Substitutes</subject><subject>Technology</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Topical Collection: International Conference on Thermoelectrics 2019</subject><subject>Transport properties</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkE2LFDEQhhtRcFz9A54CHiWzVZ1Od_qozfoBKy7MCN5CurviZp1J2iSD7L83Yy96Ew8hKep5k8pTVS8RtgjQXSbEtm04YM-h67qa94-qDcpGcFTt18fVBkSLXNZCPq2epXQHgBIVbqrlyt8aP9HM9rcUj4EONOXoJnZD0YZ4PPdYsGw4ceenEJcQTS70WwdbuRtxK_ck2HjPPtEhs93ivHf-GzN-LoWJ39nNwaSjYTvnM8XSel49seaQ6MXDflF9eXe1Hz7w68_vPw5vrvkkZJt521nqy8JGwCRQml5Bb6SlhuysRmrqrq9bUsoQWZIG1Ewzgh2NFXOHKC6qV-u9Sww_TpSyvgun6MuTuhZKSiVaEIWqV2qKIaVIVi_RHU281wj6bFavZnUxq3-b1X0JqTX0k8Zg0-SoSPoTBICml30jVTkhDC6b7IIfwsnnEn39_9FCi5VOy1kdxb9_-Md4vwDIoJz3</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Cho, Hyun-jun</creator><creator>Kim, Hyun-sik</creator><creator>Kim, Minyoung</creator><creator>Lee, Kyu Hyoung</creator><creator>Kim, Sung Wng</creator><creator>Kim, Sang-il</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-8934-4042</orcidid><orcidid>https://orcid.org/0000-0002-4802-5421</orcidid></search><sort><creationdate>20200501</creationdate><title>Enhanced Thermoelectric Performance of Cu-incorporated Bi0.5Sb1.5Te3 by Melt Spinning and Spark Plasma Sintering</title><author>Cho, Hyun-jun ; Kim, Hyun-sik ; Kim, Minyoung ; Lee, Kyu Hyoung ; Kim, Sung Wng ; Kim, Sang-il</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-67fe97fe1430c315a9809a5fe4efd8be427926e88aeefe5a08ded10fbaf3d7113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Figure of merit</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Melt spinning</topic><topic>Optical and Electronic Materials</topic><topic>Phonons</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Plasma sintering</topic><topic>Point defects</topic><topic>Power factor</topic><topic>Scattering</topic><topic>Science & Technology</topic><topic>Solid State Physics</topic><topic>Spark plasma sintering</topic><topic>Substitutes</topic><topic>Technology</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Topical Collection: International Conference on Thermoelectrics 2019</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Hyun-jun</creatorcontrib><creatorcontrib>Kim, Hyun-sik</creatorcontrib><creatorcontrib>Kim, Minyoung</creatorcontrib><creatorcontrib>Lee, Kyu Hyoung</creatorcontrib><creatorcontrib>Kim, Sung Wng</creatorcontrib><creatorcontrib>Kim, Sang-il</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Hyun-jun</au><au>Kim, Hyun-sik</au><au>Kim, Minyoung</au><au>Lee, Kyu Hyoung</au><au>Kim, Sung Wng</au><au>Kim, Sang-il</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Thermoelectric Performance of Cu-incorporated Bi0.5Sb1.5Te3 by Melt Spinning and Spark Plasma Sintering</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><stitle>J ELECTRON MATER</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>49</volume><issue>5</issue><spage>2789</spage><epage>2793</epage><pages>2789-2793</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Incorporation of a foreign element is considered as a promising approach to enhance the performance of thermoelectric materials since this can either improve the power factor by a band structure modification or reduce the thermal conductivity by a phonon scattering strengthening. We fabricated the polycrystalline bulk samples of Cu-incorporated Bi
0.5
Sb
1.5
Te
3
by melt spinning and spark plasma sintering, and evaluated the electronic and thermal transport properties. From the phase analysis and thermoelectric properties measurement, we found that most of the added excess Cu atoms were substituted at a Sb-site and a small amount of Cu was intercalated at the van der Waals gap between quintuple layers. By the formation of two different point defects (substituted Cu and intercalated Cu), the thermoelectric power factor was enhanced because of the increased density of states effective mass, and simultaneously reduced thermal conductivity originated from the intensified phonon scattering and suppressed bipolar contribution. Maximum thermoelectric figure of merit
zT
of 1.13 was obtained at 400 K.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07772-9</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8934-4042</orcidid><orcidid>https://orcid.org/0000-0002-4802-5421</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2020-05, Vol.49 (5), p.2789-2793 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_webofscience_primary_000495945800010CitationCount |
source | Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Electronics and Microelectronics Engineering Engineering, Electrical & Electronic Figure of merit Heat conductivity Heat transfer Instrumentation Materials Science Materials Science, Multidisciplinary Melt spinning Optical and Electronic Materials Phonons Physical Sciences Physics Physics, Applied Plasma sintering Point defects Power factor Scattering Science & Technology Solid State Physics Spark plasma sintering Substitutes Technology Thermal conductivity Thermoelectric materials Topical Collection: International Conference on Thermoelectrics 2019 Transport properties |
title | Enhanced Thermoelectric Performance of Cu-incorporated Bi0.5Sb1.5Te3 by Melt Spinning and Spark Plasma Sintering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Thermoelectric%20Performance%20of%20Cu-incorporated%20Bi0.5Sb1.5Te3%20by%20Melt%20Spinning%20and%20Spark%20Plasma%20Sintering&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Cho,%20Hyun-jun&rft.date=2020-05-01&rft.volume=49&rft.issue=5&rft.spage=2789&rft.epage=2793&rft.pages=2789-2793&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07772-9&rft_dat=%3Cproquest_webof%3E2385583603%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385583603&rft_id=info:pmid/&rfr_iscdi=true |