Comparative genome‐scale analysis of Pichia pastoris variants informs selection of an optimal base strain

Komagataella phaffii, also known as Pichia pastoris, is a common host for the production of biologics and enzymes, due to fast growth, high productivity, and advancements in host engineering. Several K. phaffii variants are commonly used as interchangeable base strains, which confounds efforts to im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2020-02, Vol.117 (2), p.543-555
Hauptverfasser: Brady, Joseph R., Whittaker, Charles A., Tan, Melody C., Kristensen, D. Lee, Ma, Duanduan, Dalvie, Neil C., Love, Kerry Routenberg, Love, J. Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 555
container_issue 2
container_start_page 543
container_title Biotechnology and bioengineering
container_volume 117
creator Brady, Joseph R.
Whittaker, Charles A.
Tan, Melody C.
Kristensen, D. Lee
Ma, Duanduan
Dalvie, Neil C.
Love, Kerry Routenberg
Love, J. Christopher
description Komagataella phaffii, also known as Pichia pastoris, is a common host for the production of biologics and enzymes, due to fast growth, high productivity, and advancements in host engineering. Several K. phaffii variants are commonly used as interchangeable base strains, which confounds efforts to improve this host. In this study, genomic and transcriptomic analyses of Y‐11430 (CBS7435), GS115, X‐33, and eight other variants enabled a comparative assessment of the relative fitness of these hosts for recombinant protein expression. Cell wall integrity explained the majority of the variation among strains, impacting transformation efficiency, growth, methanol metabolism, and secretion of heterologous proteins. Y‐11430 exhibited the highest activity of genes involved in methanol utilization, up to two‐fold higher transcription of heterologous genes, and robust growth. With a more permeable cell wall, X‐33 displayed a six‐fold higher transformation efficiency and up to 1.2‐fold higher titers than Y‐11430. X‐33 also shared nearly all mutations, and a defective variant of HIS4, with GS115, precluding robust growth. Transferring two beneficial mutations identified in X‐33 into Y‐11430 resulted in an optimized base strain that provided up to four‐fold higher transformation efficiency and three‐fold higher protein titers, while retaining robust growth. The approach employed here to assess unique banked variants in a species and then transfer key beneficial variants into a base strain should also facilitate rational assessment of a broad set of other recombinant hosts. Pichia pastoris is a common host for the production of biologics and enzymes, due to fast growth, high productivity, and advancements in host engineering. The authors assessed several P. pastoris variants for relative fitness as recombinant hosts by performing genomic, transcriptomic, and phenotypic analyses on each variant. This genome‐scale approach revealed key beneficial features, which were combined to create a novel, optimized base strain.
doi_str_mv 10.1002/bit.27209
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000495855200001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334598353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4809-e190d13a7daca547fbd457133f5a027aaad47360ff5903a285648f17d45d28b83</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEokNhwQugSGyoUFr_xHG8qQQRP5UqwaKsrRvHbl0Se7CdQbPrI_CMPAkOM4wACYmN7Wt_9_jonqJ4itEpRoic9TadEk6QuFesMBK8QkSg-8UKIdRUlAlyVDyK8TaXvG2ah8URxQ2ra4xXxefOT2sIkOxGl9fa-Ul_v_sWFYy6BAfjNtpYelN-tOrGQrmGmHzIVxsIFlyKpXXGhymWUY9aJevdQkNe18lOMJY9RF3GFMC6x8UDA2PUT_b7cfHp7Zur7n11-eHdRffqslJ1i0SlsUADpsAHUMBqbvqhZhxTahggwgFgqDltkDFMIAqkZU3dGswzNZC2b-lxcb7TXc_9pAelXf5-lOuQDYWt9GDlny_O3shrv5EcISooywIv9gLBf5l1THKyUelxBKf9HCWhSNQ8Dxln9Plf6K2fQx7cQtGaiTbrZepkR6ngYwzaHMxgJJcIZY5Q_owws89-d38gf2WWgZc74KvuvYnKaqf0Acsh14K1jJF8Qgvd_j_d2QRLhp2fXcqtZ_tWO-rtvy3L1xdXO-8_AIBayM8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334598353</pqid></control><display><type>article</type><title>Comparative genome‐scale analysis of Pichia pastoris variants informs selection of an optimal base strain</title><source>Access via Wiley Online Library</source><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Brady, Joseph R. ; Whittaker, Charles A. ; Tan, Melody C. ; Kristensen, D. Lee ; Ma, Duanduan ; Dalvie, Neil C. ; Love, Kerry Routenberg ; Love, J. Christopher</creator><creatorcontrib>Brady, Joseph R. ; Whittaker, Charles A. ; Tan, Melody C. ; Kristensen, D. Lee ; Ma, Duanduan ; Dalvie, Neil C. ; Love, Kerry Routenberg ; Love, J. Christopher</creatorcontrib><description>Komagataella phaffii, also known as Pichia pastoris, is a common host for the production of biologics and enzymes, due to fast growth, high productivity, and advancements in host engineering. Several K. phaffii variants are commonly used as interchangeable base strains, which confounds efforts to improve this host. In this study, genomic and transcriptomic analyses of Y‐11430 (CBS7435), GS115, X‐33, and eight other variants enabled a comparative assessment of the relative fitness of these hosts for recombinant protein expression. Cell wall integrity explained the majority of the variation among strains, impacting transformation efficiency, growth, methanol metabolism, and secretion of heterologous proteins. Y‐11430 exhibited the highest activity of genes involved in methanol utilization, up to two‐fold higher transcription of heterologous genes, and robust growth. With a more permeable cell wall, X‐33 displayed a six‐fold higher transformation efficiency and up to 1.2‐fold higher titers than Y‐11430. X‐33 also shared nearly all mutations, and a defective variant of HIS4, with GS115, precluding robust growth. Transferring two beneficial mutations identified in X‐33 into Y‐11430 resulted in an optimized base strain that provided up to four‐fold higher transformation efficiency and three‐fold higher protein titers, while retaining robust growth. The approach employed here to assess unique banked variants in a species and then transfer key beneficial variants into a base strain should also facilitate rational assessment of a broad set of other recombinant hosts. Pichia pastoris is a common host for the production of biologics and enzymes, due to fast growth, high productivity, and advancements in host engineering. The authors assessed several P. pastoris variants for relative fitness as recombinant hosts by performing genomic, transcriptomic, and phenotypic analyses on each variant. This genome‐scale approach revealed key beneficial features, which were combined to create a novel, optimized base strain.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.27209</identifier><identifier>PMID: 31654411</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Biotechnology &amp; Applied Microbiology ; Cell walls ; Efficiency ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene Expression Profiling ; Genes ; Genetic transformation ; Genome, Fungal - genetics ; Genomes ; Genomics ; heterologous gene expression ; Life Sciences &amp; Biomedicine ; Metabolism ; Methanol ; Mutation ; Pichia - genetics ; Pichia - metabolism ; Pichia pastoris ; Protein folding ; Proteins ; recombinant protein ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; RNA, Fungal - analysis ; RNA, Fungal - genetics ; RNA‐Seq ; Robustness ; Saccharomycetales - genetics ; Saccharomycetales - metabolism ; Science &amp; Technology ; Sequence Analysis, RNA ; Transcription ; Transcriptome - genetics ; Transformations ; yeast</subject><ispartof>Biotechnology and bioengineering, 2020-02, Vol.117 (2), p.543-555</ispartof><rights>2019 The Authors. published by Wiley Periodicals, Inc.</rights><rights>2019 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>31</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000495855200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4809-e190d13a7daca547fbd457133f5a027aaad47360ff5903a285648f17d45d28b83</citedby><cites>FETCH-LOGICAL-c4809-e190d13a7daca547fbd457133f5a027aaad47360ff5903a285648f17d45d28b83</cites><orcidid>0000-0002-2284-3872 ; 0000-0002-2400-0094 ; 0000-0001-7163-9547 ; 0000-0002-7912-0309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.27209$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.27209$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,28253,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31654411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brady, Joseph R.</creatorcontrib><creatorcontrib>Whittaker, Charles A.</creatorcontrib><creatorcontrib>Tan, Melody C.</creatorcontrib><creatorcontrib>Kristensen, D. Lee</creatorcontrib><creatorcontrib>Ma, Duanduan</creatorcontrib><creatorcontrib>Dalvie, Neil C.</creatorcontrib><creatorcontrib>Love, Kerry Routenberg</creatorcontrib><creatorcontrib>Love, J. Christopher</creatorcontrib><title>Comparative genome‐scale analysis of Pichia pastoris variants informs selection of an optimal base strain</title><title>Biotechnology and bioengineering</title><addtitle>BIOTECHNOL BIOENG</addtitle><addtitle>Biotechnol Bioeng</addtitle><description>Komagataella phaffii, also known as Pichia pastoris, is a common host for the production of biologics and enzymes, due to fast growth, high productivity, and advancements in host engineering. Several K. phaffii variants are commonly used as interchangeable base strains, which confounds efforts to improve this host. In this study, genomic and transcriptomic analyses of Y‐11430 (CBS7435), GS115, X‐33, and eight other variants enabled a comparative assessment of the relative fitness of these hosts for recombinant protein expression. Cell wall integrity explained the majority of the variation among strains, impacting transformation efficiency, growth, methanol metabolism, and secretion of heterologous proteins. Y‐11430 exhibited the highest activity of genes involved in methanol utilization, up to two‐fold higher transcription of heterologous genes, and robust growth. With a more permeable cell wall, X‐33 displayed a six‐fold higher transformation efficiency and up to 1.2‐fold higher titers than Y‐11430. X‐33 also shared nearly all mutations, and a defective variant of HIS4, with GS115, precluding robust growth. Transferring two beneficial mutations identified in X‐33 into Y‐11430 resulted in an optimized base strain that provided up to four‐fold higher transformation efficiency and three‐fold higher protein titers, while retaining robust growth. The approach employed here to assess unique banked variants in a species and then transfer key beneficial variants into a base strain should also facilitate rational assessment of a broad set of other recombinant hosts. Pichia pastoris is a common host for the production of biologics and enzymes, due to fast growth, high productivity, and advancements in host engineering. The authors assessed several P. pastoris variants for relative fitness as recombinant hosts by performing genomic, transcriptomic, and phenotypic analyses on each variant. This genome‐scale approach revealed key beneficial features, which were combined to create a novel, optimized base strain.</description><subject>Biotechnology &amp; Applied Microbiology</subject><subject>Cell walls</subject><subject>Efficiency</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genetic transformation</subject><subject>Genome, Fungal - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>heterologous gene expression</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Metabolism</subject><subject>Methanol</subject><subject>Mutation</subject><subject>Pichia - genetics</subject><subject>Pichia - metabolism</subject><subject>Pichia pastoris</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>recombinant protein</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA, Fungal - analysis</subject><subject>RNA, Fungal - genetics</subject><subject>RNA‐Seq</subject><subject>Robustness</subject><subject>Saccharomycetales - genetics</subject><subject>Saccharomycetales - metabolism</subject><subject>Science &amp; Technology</subject><subject>Sequence Analysis, RNA</subject><subject>Transcription</subject><subject>Transcriptome - genetics</subject><subject>Transformations</subject><subject>yeast</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhSMEokNhwQugSGyoUFr_xHG8qQQRP5UqwaKsrRvHbl0Se7CdQbPrI_CMPAkOM4wACYmN7Wt_9_jonqJ4itEpRoic9TadEk6QuFesMBK8QkSg-8UKIdRUlAlyVDyK8TaXvG2ah8URxQ2ra4xXxefOT2sIkOxGl9fa-Ul_v_sWFYy6BAfjNtpYelN-tOrGQrmGmHzIVxsIFlyKpXXGhymWUY9aJevdQkNe18lOMJY9RF3GFMC6x8UDA2PUT_b7cfHp7Zur7n11-eHdRffqslJ1i0SlsUADpsAHUMBqbvqhZhxTahggwgFgqDltkDFMIAqkZU3dGswzNZC2b-lxcb7TXc_9pAelXf5-lOuQDYWt9GDlny_O3shrv5EcISooywIv9gLBf5l1THKyUelxBKf9HCWhSNQ8Dxln9Plf6K2fQx7cQtGaiTbrZepkR6ngYwzaHMxgJJcIZY5Q_owws89-d38gf2WWgZc74KvuvYnKaqf0Acsh14K1jJF8Qgvd_j_d2QRLhp2fXcqtZ_tWO-rtvy3L1xdXO-8_AIBayM8</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Brady, Joseph R.</creator><creator>Whittaker, Charles A.</creator><creator>Tan, Melody C.</creator><creator>Kristensen, D. Lee</creator><creator>Ma, Duanduan</creator><creator>Dalvie, Neil C.</creator><creator>Love, Kerry Routenberg</creator><creator>Love, J. Christopher</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2284-3872</orcidid><orcidid>https://orcid.org/0000-0002-2400-0094</orcidid><orcidid>https://orcid.org/0000-0001-7163-9547</orcidid><orcidid>https://orcid.org/0000-0002-7912-0309</orcidid></search><sort><creationdate>202002</creationdate><title>Comparative genome‐scale analysis of Pichia pastoris variants informs selection of an optimal base strain</title><author>Brady, Joseph R. ; Whittaker, Charles A. ; Tan, Melody C. ; Kristensen, D. Lee ; Ma, Duanduan ; Dalvie, Neil C. ; Love, Kerry Routenberg ; Love, J. Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4809-e190d13a7daca547fbd457133f5a027aaad47360ff5903a285648f17d45d28b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biotechnology &amp; Applied Microbiology</topic><topic>Cell walls</topic><topic>Efficiency</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genetic transformation</topic><topic>Genome, Fungal - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>heterologous gene expression</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Metabolism</topic><topic>Methanol</topic><topic>Mutation</topic><topic>Pichia - genetics</topic><topic>Pichia - metabolism</topic><topic>Pichia pastoris</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>recombinant protein</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA, Fungal - analysis</topic><topic>RNA, Fungal - genetics</topic><topic>RNA‐Seq</topic><topic>Robustness</topic><topic>Saccharomycetales - genetics</topic><topic>Saccharomycetales - metabolism</topic><topic>Science &amp; Technology</topic><topic>Sequence Analysis, RNA</topic><topic>Transcription</topic><topic>Transcriptome - genetics</topic><topic>Transformations</topic><topic>yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brady, Joseph R.</creatorcontrib><creatorcontrib>Whittaker, Charles A.</creatorcontrib><creatorcontrib>Tan, Melody C.</creatorcontrib><creatorcontrib>Kristensen, D. Lee</creatorcontrib><creatorcontrib>Ma, Duanduan</creatorcontrib><creatorcontrib>Dalvie, Neil C.</creatorcontrib><creatorcontrib>Love, Kerry Routenberg</creatorcontrib><creatorcontrib>Love, J. Christopher</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brady, Joseph R.</au><au>Whittaker, Charles A.</au><au>Tan, Melody C.</au><au>Kristensen, D. Lee</au><au>Ma, Duanduan</au><au>Dalvie, Neil C.</au><au>Love, Kerry Routenberg</au><au>Love, J. Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative genome‐scale analysis of Pichia pastoris variants informs selection of an optimal base strain</atitle><jtitle>Biotechnology and bioengineering</jtitle><stitle>BIOTECHNOL BIOENG</stitle><addtitle>Biotechnol Bioeng</addtitle><date>2020-02</date><risdate>2020</risdate><volume>117</volume><issue>2</issue><spage>543</spage><epage>555</epage><pages>543-555</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Komagataella phaffii, also known as Pichia pastoris, is a common host for the production of biologics and enzymes, due to fast growth, high productivity, and advancements in host engineering. Several K. phaffii variants are commonly used as interchangeable base strains, which confounds efforts to improve this host. In this study, genomic and transcriptomic analyses of Y‐11430 (CBS7435), GS115, X‐33, and eight other variants enabled a comparative assessment of the relative fitness of these hosts for recombinant protein expression. Cell wall integrity explained the majority of the variation among strains, impacting transformation efficiency, growth, methanol metabolism, and secretion of heterologous proteins. Y‐11430 exhibited the highest activity of genes involved in methanol utilization, up to two‐fold higher transcription of heterologous genes, and robust growth. With a more permeable cell wall, X‐33 displayed a six‐fold higher transformation efficiency and up to 1.2‐fold higher titers than Y‐11430. X‐33 also shared nearly all mutations, and a defective variant of HIS4, with GS115, precluding robust growth. Transferring two beneficial mutations identified in X‐33 into Y‐11430 resulted in an optimized base strain that provided up to four‐fold higher transformation efficiency and three‐fold higher protein titers, while retaining robust growth. The approach employed here to assess unique banked variants in a species and then transfer key beneficial variants into a base strain should also facilitate rational assessment of a broad set of other recombinant hosts. Pichia pastoris is a common host for the production of biologics and enzymes, due to fast growth, high productivity, and advancements in host engineering. The authors assessed several P. pastoris variants for relative fitness as recombinant hosts by performing genomic, transcriptomic, and phenotypic analyses on each variant. This genome‐scale approach revealed key beneficial features, which were combined to create a novel, optimized base strain.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>31654411</pmid><doi>10.1002/bit.27209</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2284-3872</orcidid><orcidid>https://orcid.org/0000-0002-2400-0094</orcidid><orcidid>https://orcid.org/0000-0001-7163-9547</orcidid><orcidid>https://orcid.org/0000-0002-7912-0309</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2020-02, Vol.117 (2), p.543-555
issn 0006-3592
1097-0290
language eng
recordid cdi_webofscience_primary_000495855200001CitationCount
source Access via Wiley Online Library; MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Biotechnology & Applied Microbiology
Cell walls
Efficiency
Fungal Proteins - genetics
Fungal Proteins - metabolism
Gene Expression Profiling
Genes
Genetic transformation
Genome, Fungal - genetics
Genomes
Genomics
heterologous gene expression
Life Sciences & Biomedicine
Metabolism
Methanol
Mutation
Pichia - genetics
Pichia - metabolism
Pichia pastoris
Protein folding
Proteins
recombinant protein
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
RNA, Fungal - analysis
RNA, Fungal - genetics
RNA‐Seq
Robustness
Saccharomycetales - genetics
Saccharomycetales - metabolism
Science & Technology
Sequence Analysis, RNA
Transcription
Transcriptome - genetics
Transformations
yeast
title Comparative genome‐scale analysis of Pichia pastoris variants informs selection of an optimal base strain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20genome%E2%80%90scale%20analysis%20of%20Pichia%20pastoris%20variants%20informs%20selection%20of%20an%20optimal%20base%20strain&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Brady,%20Joseph%20R.&rft.date=2020-02&rft.volume=117&rft.issue=2&rft.spage=543&rft.epage=555&rft.pages=543-555&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.27209&rft_dat=%3Cproquest_webof%3E2334598353%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334598353&rft_id=info:pmid/31654411&rfr_iscdi=true