Mathematical modeling of regeneration of coked Cr-Mg catalyst in fixed bed reactors
[Display omitted] •The mathematical modeling of the coked Cr-Mg catalyst regeneration is studied.•The parameters of the model were determined from the lab-scale experiments.•The inlet gas temperature higher than catalyst one leads to the adiabatic bed heating.•The low inlet gas temperature leads to...
Gespeichert in:
Veröffentlicht in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2020-01, Vol.380, p.122374, Article 122374 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122374 |
container_title | Chemical engineering journal (Lausanne, Switzerland : 1996) |
container_volume | 380 |
creator | Reshetnikov, S.I. Petrov, R.V. Zazhigalov, S.V. Zagoruiko, A.N. |
description | [Display omitted]
•The mathematical modeling of the coked Cr-Mg catalyst regeneration is studied.•The parameters of the model were determined from the lab-scale experiments.•The inlet gas temperature higher than catalyst one leads to the adiabatic bed heating.•The low inlet gas temperature leads to the overheating and catalyst damage.
On the base of two-dimensional (bed length and pellet radius coordinates) two-temperature (gas and catalyst phases) mathematical model the coked CrF3/MgF2 catalyst regeneration process in the adiabatic reactor of gas-phase perchloroethylene hydrofluorination to pentafluoroethane (Freon 125) is studied. The parameters of the mathematical model such as coke burning rate constant, temperature of the coke burning beginning T* (ignition point), heat of the reaction and activation energy were determined from experiments in lab-scale reactor and from the thermal analysis data. The influence of process parameters, e.g. oxygen and coke concentrations, initial gas and catalyst temperatures and pellet size was investigated. The simulation was carried out under conditions of low oxygen concentration (oxygen shortage) and showed that if the inlet gas temperature Tgo is lower than initial catalyst temperature Tp0 (Tgo |
doi_str_mv | 10.1016/j.cej.2019.122374 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000494815600009CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894719317772</els_id><sourcerecordid>S1385894719317772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-9aecea3a2e259fab75b8eb48b84bd76c530926ab5969ad43deb6cbc4e8f7af633</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhosoOI4-gLvupTW3pgmupHiDERfqOiTp6Zg600gaL_P2ZuzgUlyE_Cc53-HwZdkpRiVGmJ_3pYW-JAjLEhNCa7aXzbCoaUEJJvspU1EVQrL6MDsaxx4hxCWWs-zxXscXWOvorF7la9_Cyg3L3Hd5gCUMENKPH7a19a_Q5k0o7pe51VGvNmPM3ZB37iu9m3QCaBt9GI-zg06vRjjZ3fPs-frqqbktFg83d83lorBE1rGQGixoqgmQSnba1JURYJgwgpm25raiSBKuTSW51C2jLRhujWUgulp3nNJ5hqe5NvhxDNCpt-DWOmwURmprRfUqWVFbK2qykpizifkE47vROhgs_HJJC5NM4IqnhGTqFv_vblz8kdX49yEm9GJCIRn4cBDUDm9dABtV690fa34DMJ2MjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mathematical modeling of regeneration of coked Cr-Mg catalyst in fixed bed reactors</title><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Reshetnikov, S.I. ; Petrov, R.V. ; Zazhigalov, S.V. ; Zagoruiko, A.N.</creator><creatorcontrib>Reshetnikov, S.I. ; Petrov, R.V. ; Zazhigalov, S.V. ; Zagoruiko, A.N.</creatorcontrib><description>[Display omitted]
•The mathematical modeling of the coked Cr-Mg catalyst regeneration is studied.•The parameters of the model were determined from the lab-scale experiments.•The inlet gas temperature higher than catalyst one leads to the adiabatic bed heating.•The low inlet gas temperature leads to the overheating and catalyst damage.
On the base of two-dimensional (bed length and pellet radius coordinates) two-temperature (gas and catalyst phases) mathematical model the coked CrF3/MgF2 catalyst regeneration process in the adiabatic reactor of gas-phase perchloroethylene hydrofluorination to pentafluoroethane (Freon 125) is studied. The parameters of the mathematical model such as coke burning rate constant, temperature of the coke burning beginning T* (ignition point), heat of the reaction and activation energy were determined from experiments in lab-scale reactor and from the thermal analysis data. The influence of process parameters, e.g. oxygen and coke concentrations, initial gas and catalyst temperatures and pellet size was investigated. The simulation was carried out under conditions of low oxygen concentration (oxygen shortage) and showed that if the inlet gas temperature Tgo is lower than initial catalyst temperature Tp0 (Tgo<Tp0, Tpo≥T*), the coke burning occurs only near the outer surface of catalyst pellet, because the bed is “cooled” by the inlet gas flow. This leads to the dramatic rise of temperature in a narrow “peak burning wave” and to an unexpected bed overheating that exceeds the adiabatic heating. This effect was not discussed in publications but was detected in industrial reactor during the coked chromium–magnesium catalyst regeneration. This result is very significant for industrial applications since it helps to avoid the catalyst overheating and the following catalyst activity decreasing during the regeneration.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2019.122374</identifier><language>eng</language><publisher>LAUSANNE: Elsevier B.V</publisher><subject>Catalyst overheating ; Coked catalyst regeneration ; Engineering ; Engineering, Chemical ; Engineering, Environmental ; Fixed bed reactor ; Kinetic parameters ; Mathematical modeling ; Science & Technology ; Technology</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2020-01, Vol.380, p.122374, Article 122374</ispartof><rights>2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000494815600009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c297t-9aecea3a2e259fab75b8eb48b84bd76c530926ab5969ad43deb6cbc4e8f7af633</citedby><cites>FETCH-LOGICAL-c297t-9aecea3a2e259fab75b8eb48b84bd76c530926ab5969ad43deb6cbc4e8f7af633</cites><orcidid>0000-0001-6217-0302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cej.2019.122374$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,28257,46004</link.rule.ids></links><search><creatorcontrib>Reshetnikov, S.I.</creatorcontrib><creatorcontrib>Petrov, R.V.</creatorcontrib><creatorcontrib>Zazhigalov, S.V.</creatorcontrib><creatorcontrib>Zagoruiko, A.N.</creatorcontrib><title>Mathematical modeling of regeneration of coked Cr-Mg catalyst in fixed bed reactors</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><addtitle>CHEM ENG J</addtitle><description>[Display omitted]
•The mathematical modeling of the coked Cr-Mg catalyst regeneration is studied.•The parameters of the model were determined from the lab-scale experiments.•The inlet gas temperature higher than catalyst one leads to the adiabatic bed heating.•The low inlet gas temperature leads to the overheating and catalyst damage.
On the base of two-dimensional (bed length and pellet radius coordinates) two-temperature (gas and catalyst phases) mathematical model the coked CrF3/MgF2 catalyst regeneration process in the adiabatic reactor of gas-phase perchloroethylene hydrofluorination to pentafluoroethane (Freon 125) is studied. The parameters of the mathematical model such as coke burning rate constant, temperature of the coke burning beginning T* (ignition point), heat of the reaction and activation energy were determined from experiments in lab-scale reactor and from the thermal analysis data. The influence of process parameters, e.g. oxygen and coke concentrations, initial gas and catalyst temperatures and pellet size was investigated. The simulation was carried out under conditions of low oxygen concentration (oxygen shortage) and showed that if the inlet gas temperature Tgo is lower than initial catalyst temperature Tp0 (Tgo<Tp0, Tpo≥T*), the coke burning occurs only near the outer surface of catalyst pellet, because the bed is “cooled” by the inlet gas flow. This leads to the dramatic rise of temperature in a narrow “peak burning wave” and to an unexpected bed overheating that exceeds the adiabatic heating. This effect was not discussed in publications but was detected in industrial reactor during the coked chromium–magnesium catalyst regeneration. This result is very significant for industrial applications since it helps to avoid the catalyst overheating and the following catalyst activity decreasing during the regeneration.</description><subject>Catalyst overheating</subject><subject>Coked catalyst regeneration</subject><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Engineering, Environmental</subject><subject>Fixed bed reactor</subject><subject>Kinetic parameters</subject><subject>Mathematical modeling</subject><subject>Science & Technology</subject><subject>Technology</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMtKxDAUhosoOI4-gLvupTW3pgmupHiDERfqOiTp6Zg600gaL_P2ZuzgUlyE_Cc53-HwZdkpRiVGmJ_3pYW-JAjLEhNCa7aXzbCoaUEJJvspU1EVQrL6MDsaxx4hxCWWs-zxXscXWOvorF7la9_Cyg3L3Hd5gCUMENKPH7a19a_Q5k0o7pe51VGvNmPM3ZB37iu9m3QCaBt9GI-zg06vRjjZ3fPs-frqqbktFg83d83lorBE1rGQGixoqgmQSnba1JURYJgwgpm25raiSBKuTSW51C2jLRhujWUgulp3nNJ5hqe5NvhxDNCpt-DWOmwURmprRfUqWVFbK2qykpizifkE47vROhgs_HJJC5NM4IqnhGTqFv_vblz8kdX49yEm9GJCIRn4cBDUDm9dABtV690fa34DMJ2MjQ</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Reshetnikov, S.I.</creator><creator>Petrov, R.V.</creator><creator>Zazhigalov, S.V.</creator><creator>Zagoruiko, A.N.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6217-0302</orcidid></search><sort><creationdate>20200115</creationdate><title>Mathematical modeling of regeneration of coked Cr-Mg catalyst in fixed bed reactors</title><author>Reshetnikov, S.I. ; Petrov, R.V. ; Zazhigalov, S.V. ; Zagoruiko, A.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-9aecea3a2e259fab75b8eb48b84bd76c530926ab5969ad43deb6cbc4e8f7af633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalyst overheating</topic><topic>Coked catalyst regeneration</topic><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Engineering, Environmental</topic><topic>Fixed bed reactor</topic><topic>Kinetic parameters</topic><topic>Mathematical modeling</topic><topic>Science & Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reshetnikov, S.I.</creatorcontrib><creatorcontrib>Petrov, R.V.</creatorcontrib><creatorcontrib>Zazhigalov, S.V.</creatorcontrib><creatorcontrib>Zagoruiko, A.N.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reshetnikov, S.I.</au><au>Petrov, R.V.</au><au>Zazhigalov, S.V.</au><au>Zagoruiko, A.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of regeneration of coked Cr-Mg catalyst in fixed bed reactors</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><stitle>CHEM ENG J</stitle><date>2020-01-15</date><risdate>2020</risdate><volume>380</volume><spage>122374</spage><pages>122374-</pages><artnum>122374</artnum><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>[Display omitted]
•The mathematical modeling of the coked Cr-Mg catalyst regeneration is studied.•The parameters of the model were determined from the lab-scale experiments.•The inlet gas temperature higher than catalyst one leads to the adiabatic bed heating.•The low inlet gas temperature leads to the overheating and catalyst damage.
On the base of two-dimensional (bed length and pellet radius coordinates) two-temperature (gas and catalyst phases) mathematical model the coked CrF3/MgF2 catalyst regeneration process in the adiabatic reactor of gas-phase perchloroethylene hydrofluorination to pentafluoroethane (Freon 125) is studied. The parameters of the mathematical model such as coke burning rate constant, temperature of the coke burning beginning T* (ignition point), heat of the reaction and activation energy were determined from experiments in lab-scale reactor and from the thermal analysis data. The influence of process parameters, e.g. oxygen and coke concentrations, initial gas and catalyst temperatures and pellet size was investigated. The simulation was carried out under conditions of low oxygen concentration (oxygen shortage) and showed that if the inlet gas temperature Tgo is lower than initial catalyst temperature Tp0 (Tgo<Tp0, Tpo≥T*), the coke burning occurs only near the outer surface of catalyst pellet, because the bed is “cooled” by the inlet gas flow. This leads to the dramatic rise of temperature in a narrow “peak burning wave” and to an unexpected bed overheating that exceeds the adiabatic heating. This effect was not discussed in publications but was detected in industrial reactor during the coked chromium–magnesium catalyst regeneration. This result is very significant for industrial applications since it helps to avoid the catalyst overheating and the following catalyst activity decreasing during the regeneration.</abstract><cop>LAUSANNE</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2019.122374</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6217-0302</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-8947 |
ispartof | Chemical engineering journal (Lausanne, Switzerland : 1996), 2020-01, Vol.380, p.122374, Article 122374 |
issn | 1385-8947 1873-3212 |
language | eng |
recordid | cdi_webofscience_primary_000494815600009CitationCount |
source | Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Catalyst overheating Coked catalyst regeneration Engineering Engineering, Chemical Engineering, Environmental Fixed bed reactor Kinetic parameters Mathematical modeling Science & Technology Technology |
title | Mathematical modeling of regeneration of coked Cr-Mg catalyst in fixed bed reactors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T16%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20regeneration%20of%20coked%20Cr-Mg%20catalyst%20in%20fixed%20bed%20reactors&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Reshetnikov,%20S.I.&rft.date=2020-01-15&rft.volume=380&rft.spage=122374&rft.pages=122374-&rft.artnum=122374&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2019.122374&rft_dat=%3Celsevier_webof%3ES1385894719317772%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1385894719317772&rfr_iscdi=true |