Cell mechanical microenvironment for cell volume regulation

Cell volume regulation, as one of the fundamental homeostasis of the cell, is associated with many cellular behaviors and functions. With the increased studies on the effect of environmental mechanical cues on cell volume regulation, the relationship between cell volume regulation and mechanotransdu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2020-05, Vol.235 (5), p.4070-4081
Hauptverfasser: Wang, Meng, Yang, Yaowei, Han, Lichun, Xu, Feng, Li, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4081
container_issue 5
container_start_page 4070
container_title Journal of cellular physiology
container_volume 235
creator Wang, Meng
Yang, Yaowei
Han, Lichun
Xu, Feng
Li, Fei
description Cell volume regulation, as one of the fundamental homeostasis of the cell, is associated with many cellular behaviors and functions. With the increased studies on the effect of environmental mechanical cues on cell volume regulation, the relationship between cell volume regulation and mechanotransduction becomes more and more clear. In this paper, we review the mechanisms and hypotheses by which cell maintains its volume homeostasis both in vivo and in constructed cell mechanical microenvironment (CMM) in vitro. We discuss how the growth‐division regulation maintains the volume homeostasis of cells in the cell cycle and how the cell cortex/membrane tension mediates the effect of CMM (i.e., osmotic pressure, matrix stiffness, and mechanical force) on cell volume regulation. We also highlight the roles of cell volume as a perfect integrator of the downstream signals of mechanotransduction from different aspects of CMM and an effective indicator for the mechanical condition that cell confronts. This interdisciplinary perspective can provide new insight into biomechanics and may shed light on bioengineering and pathological research work. We hope this review can facilitate future studies on the investigation of the role of cell volume in mechanotransduction. In this paper, we review the mechanisms and hypotheses by which cell maintains its volume homeostasis both in vivo and in constructed cell mechanical microenvironment in vitro. We discuss how mechanical signals been sensed and transduced to volume regulation via the tension on cell cortical.
doi_str_mv 10.1002/jcp.29341
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000491851800001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353496201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4191-338490d51d54fdfbc641afae0f6c469cf9abb4497f4cc2b42335685da9a753973</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhoMoOl4WvoAMuFGkTu5tcCXFKwO60HVJ00QztMmYtIpvb-aiC0FwdQ6c75z8-QA4RPAcQYgnMzU_x4JQtAFGCIo8o5zhTTBKM5QJRtEO2I1xBiEUgpBtsEMQJ3mO8QhclLptx51Wr9JZJVNrVfDavdvgXaddPzY-jNUCevft0Olx0C9DK3vr3T7YMrKN-mBd98Dz9dVTeZtNH27uystppigSKCOkoAI2DDWMmsbUilMkjdTQcEW5UEbIuqZU5IYqhWuKCWG8YI0UMmdE5GQPnKzuzoN_G3Tsq87GRSTptB9ihQnMcyI44Qk9_oXO_BBcSpcoRqjgGKJEna6o9NUYgzbVPNhOhs8KwWphtEpGq6XRxB6tLw51p5sf8lthAs5WwIeuvYnKaqf0D5acU4EKhorULZ8u_k-Xtl-KLv3g-rQ6Wa_aVn_-Hbm6Lx9X2b8Air-fEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353496201</pqid></control><display><type>article</type><title>Cell mechanical microenvironment for cell volume regulation</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Wang, Meng ; Yang, Yaowei ; Han, Lichun ; Xu, Feng ; Li, Fei</creator><creatorcontrib>Wang, Meng ; Yang, Yaowei ; Han, Lichun ; Xu, Feng ; Li, Fei</creatorcontrib><description>Cell volume regulation, as one of the fundamental homeostasis of the cell, is associated with many cellular behaviors and functions. With the increased studies on the effect of environmental mechanical cues on cell volume regulation, the relationship between cell volume regulation and mechanotransduction becomes more and more clear. In this paper, we review the mechanisms and hypotheses by which cell maintains its volume homeostasis both in vivo and in constructed cell mechanical microenvironment (CMM) in vitro. We discuss how the growth‐division regulation maintains the volume homeostasis of cells in the cell cycle and how the cell cortex/membrane tension mediates the effect of CMM (i.e., osmotic pressure, matrix stiffness, and mechanical force) on cell volume regulation. We also highlight the roles of cell volume as a perfect integrator of the downstream signals of mechanotransduction from different aspects of CMM and an effective indicator for the mechanical condition that cell confronts. This interdisciplinary perspective can provide new insight into biomechanics and may shed light on bioengineering and pathological research work. We hope this review can facilitate future studies on the investigation of the role of cell volume in mechanotransduction. In this paper, we review the mechanisms and hypotheses by which cell maintains its volume homeostasis both in vivo and in constructed cell mechanical microenvironment in vitro. We discuss how mechanical signals been sensed and transduced to volume regulation via the tension on cell cortical.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.29341</identifier><identifier>PMID: 31637722</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Bioengineering ; Biomechanical Phenomena ; Biomechanics ; Cell Biology ; cell cortical tension ; Cell cycle ; cell mechanical microenvironment ; Cell Size ; cell volume regulation ; Cellular Microenvironment ; Environmental effects ; Extracellular Matrix ; Homeostasis ; Humans ; Life Sciences &amp; Biomedicine ; Mechanotransduction ; Mechanotransduction, Cellular - physiology ; Osmosis ; Osmotic pressure ; Physiology ; Science &amp; Technology ; Stiffness</subject><ispartof>Journal of cellular physiology, 2020-05, Vol.235 (5), p.4070-4081</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>25</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000491851800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4191-338490d51d54fdfbc641afae0f6c469cf9abb4497f4cc2b42335685da9a753973</citedby><cites>FETCH-LOGICAL-c4191-338490d51d54fdfbc641afae0f6c469cf9abb4497f4cc2b42335685da9a753973</cites><orcidid>0000-0003-4351-0222 ; 0000-0003-2081-8339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.29341$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.29341$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,28255,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31637722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Yang, Yaowei</creatorcontrib><creatorcontrib>Han, Lichun</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><title>Cell mechanical microenvironment for cell volume regulation</title><title>Journal of cellular physiology</title><addtitle>J CELL PHYSIOL</addtitle><addtitle>J Cell Physiol</addtitle><description>Cell volume regulation, as one of the fundamental homeostasis of the cell, is associated with many cellular behaviors and functions. With the increased studies on the effect of environmental mechanical cues on cell volume regulation, the relationship between cell volume regulation and mechanotransduction becomes more and more clear. In this paper, we review the mechanisms and hypotheses by which cell maintains its volume homeostasis both in vivo and in constructed cell mechanical microenvironment (CMM) in vitro. We discuss how the growth‐division regulation maintains the volume homeostasis of cells in the cell cycle and how the cell cortex/membrane tension mediates the effect of CMM (i.e., osmotic pressure, matrix stiffness, and mechanical force) on cell volume regulation. We also highlight the roles of cell volume as a perfect integrator of the downstream signals of mechanotransduction from different aspects of CMM and an effective indicator for the mechanical condition that cell confronts. This interdisciplinary perspective can provide new insight into biomechanics and may shed light on bioengineering and pathological research work. We hope this review can facilitate future studies on the investigation of the role of cell volume in mechanotransduction. In this paper, we review the mechanisms and hypotheses by which cell maintains its volume homeostasis both in vivo and in constructed cell mechanical microenvironment in vitro. We discuss how mechanical signals been sensed and transduced to volume regulation via the tension on cell cortical.</description><subject>Bioengineering</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Cell Biology</subject><subject>cell cortical tension</subject><subject>Cell cycle</subject><subject>cell mechanical microenvironment</subject><subject>Cell Size</subject><subject>cell volume regulation</subject><subject>Cellular Microenvironment</subject><subject>Environmental effects</subject><subject>Extracellular Matrix</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Mechanotransduction</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Osmosis</subject><subject>Osmotic pressure</subject><subject>Physiology</subject><subject>Science &amp; Technology</subject><subject>Stiffness</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkMtKxDAUhoMoOl4WvoAMuFGkTu5tcCXFKwO60HVJ00QztMmYtIpvb-aiC0FwdQ6c75z8-QA4RPAcQYgnMzU_x4JQtAFGCIo8o5zhTTBKM5QJRtEO2I1xBiEUgpBtsEMQJ3mO8QhclLptx51Wr9JZJVNrVfDavdvgXaddPzY-jNUCevft0Olx0C9DK3vr3T7YMrKN-mBd98Dz9dVTeZtNH27uystppigSKCOkoAI2DDWMmsbUilMkjdTQcEW5UEbIuqZU5IYqhWuKCWG8YI0UMmdE5GQPnKzuzoN_G3Tsq87GRSTptB9ihQnMcyI44Qk9_oXO_BBcSpcoRqjgGKJEna6o9NUYgzbVPNhOhs8KwWphtEpGq6XRxB6tLw51p5sf8lthAs5WwIeuvYnKaqf0D5acU4EKhorULZ8u_k-Xtl-KLv3g-rQ6Wa_aVn_-Hbm6Lx9X2b8Air-fEA</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Wang, Meng</creator><creator>Yang, Yaowei</creator><creator>Han, Lichun</creator><creator>Xu, Feng</creator><creator>Li, Fei</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4351-0222</orcidid><orcidid>https://orcid.org/0000-0003-2081-8339</orcidid></search><sort><creationdate>202005</creationdate><title>Cell mechanical microenvironment for cell volume regulation</title><author>Wang, Meng ; Yang, Yaowei ; Han, Lichun ; Xu, Feng ; Li, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4191-338490d51d54fdfbc641afae0f6c469cf9abb4497f4cc2b42335685da9a753973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioengineering</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Cell Biology</topic><topic>cell cortical tension</topic><topic>Cell cycle</topic><topic>cell mechanical microenvironment</topic><topic>Cell Size</topic><topic>cell volume regulation</topic><topic>Cellular Microenvironment</topic><topic>Environmental effects</topic><topic>Extracellular Matrix</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Mechanotransduction</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Osmosis</topic><topic>Osmotic pressure</topic><topic>Physiology</topic><topic>Science &amp; Technology</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Yang, Yaowei</creatorcontrib><creatorcontrib>Han, Lichun</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Meng</au><au>Yang, Yaowei</au><au>Han, Lichun</au><au>Xu, Feng</au><au>Li, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell mechanical microenvironment for cell volume regulation</atitle><jtitle>Journal of cellular physiology</jtitle><stitle>J CELL PHYSIOL</stitle><addtitle>J Cell Physiol</addtitle><date>2020-05</date><risdate>2020</risdate><volume>235</volume><issue>5</issue><spage>4070</spage><epage>4081</epage><pages>4070-4081</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Cell volume regulation, as one of the fundamental homeostasis of the cell, is associated with many cellular behaviors and functions. With the increased studies on the effect of environmental mechanical cues on cell volume regulation, the relationship between cell volume regulation and mechanotransduction becomes more and more clear. In this paper, we review the mechanisms and hypotheses by which cell maintains its volume homeostasis both in vivo and in constructed cell mechanical microenvironment (CMM) in vitro. We discuss how the growth‐division regulation maintains the volume homeostasis of cells in the cell cycle and how the cell cortex/membrane tension mediates the effect of CMM (i.e., osmotic pressure, matrix stiffness, and mechanical force) on cell volume regulation. We also highlight the roles of cell volume as a perfect integrator of the downstream signals of mechanotransduction from different aspects of CMM and an effective indicator for the mechanical condition that cell confronts. This interdisciplinary perspective can provide new insight into biomechanics and may shed light on bioengineering and pathological research work. We hope this review can facilitate future studies on the investigation of the role of cell volume in mechanotransduction. In this paper, we review the mechanisms and hypotheses by which cell maintains its volume homeostasis both in vivo and in constructed cell mechanical microenvironment in vitro. We discuss how mechanical signals been sensed and transduced to volume regulation via the tension on cell cortical.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>31637722</pmid><doi>10.1002/jcp.29341</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4351-0222</orcidid><orcidid>https://orcid.org/0000-0003-2081-8339</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2020-05, Vol.235 (5), p.4070-4081
issn 0021-9541
1097-4652
language eng
recordid cdi_webofscience_primary_000491851800001
source MEDLINE; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Bioengineering
Biomechanical Phenomena
Biomechanics
Cell Biology
cell cortical tension
Cell cycle
cell mechanical microenvironment
Cell Size
cell volume regulation
Cellular Microenvironment
Environmental effects
Extracellular Matrix
Homeostasis
Humans
Life Sciences & Biomedicine
Mechanotransduction
Mechanotransduction, Cellular - physiology
Osmosis
Osmotic pressure
Physiology
Science & Technology
Stiffness
title Cell mechanical microenvironment for cell volume regulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A52%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20mechanical%20microenvironment%20for%20cell%20volume%20regulation&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Wang,%20Meng&rft.date=2020-05&rft.volume=235&rft.issue=5&rft.spage=4070&rft.epage=4081&rft.pages=4070-4081&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.29341&rft_dat=%3Cproquest_webof%3E2353496201%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353496201&rft_id=info:pmid/31637722&rfr_iscdi=true