Temporally separated feline calicivirus isolates do not cluster phylogenetically and are similarly neutralised by high-titre vaccine strain FCV-F9 antisera in vitro

Objectives Feline calicivirus (FCV) is a highly variable and globally important feline pathogen for which vaccination has been the mainstay of control. Here, we test whether the continued use of FCV-F9, one of the most frequently used vaccine strains globally, is driving the emergence of vaccine-res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of feline medicine and surgery 2020-06, Vol.22 (6), p.602-607
Hauptverfasser: Smith, Shirley L, Afonso, Maria M, Pinchbeck, Gina L, Gaskell, Rosalind M, Dawson, Susan, Radford, Alan D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 607
container_issue 6
container_start_page 602
container_title Journal of feline medicine and surgery
container_volume 22
creator Smith, Shirley L
Afonso, Maria M
Pinchbeck, Gina L
Gaskell, Rosalind M
Dawson, Susan
Radford, Alan D
description Objectives Feline calicivirus (FCV) is a highly variable and globally important feline pathogen for which vaccination has been the mainstay of control. Here, we test whether the continued use of FCV-F9, one of the most frequently used vaccine strains globally, is driving the emergence of vaccine-resistant viruses in the field. Methods This study made use of two representative panels of field isolates previously collected from cats visiting randomly selected veterinary practices across the UK as part of separate cross-sectional studies from 2001 and 2013/2014. Phylogenetic analysis and in vitro virus neutralisation tests were used to compare the genetic and antigenic relationships between these populations and FCV-F9. Results Phylogenetic analysis showed a typically radial distribution dominated by 52 distinct strains, with strains from both 2001 and 2013/2014 intermingled. The sequence for FCV-F9 appeared to be integral to this phylogeny and there were no significant differences in the genetic distances within each studied population (intra-population distances), or between them (inter-population distances), or between each population and FCV-F9. A 1 in 8 dilution neutralised 97% and 100% of the 2001 and 2013/14 isolates, respectively, and a 1 in 16 dilution neutralised 87% and 75% of isolates, respectively. There was no significant difference either in variance between the FCV-F9 neutralising titres for the two populations, or in the distribution of neutralisation titres across the two populations. Conclusions and relevance Although FCV is a highly variable virus, we found no evidence for a progressive divergence of field virus from vaccine strain FCV-F9, either phylogenetically or antigenically, with FCV-F9 antisera remaining broadly and equally cross-reactive to two geographically representative and temporally separated FCV populations. We suggest this may be because the immunodominant region of the FCV capsid responsible for neutralisation may have structural constraints preventing its longer term progressive antigenic evolution.
doi_str_mv 10.1177/1098612X19866521
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7252219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1098612X19866521</sage_id><sourcerecordid>2273231366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-be0a200c0fa09c0c07837a0059c20e677bc4e6fe90b747cdc4cf26832796fb8f3</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxSNERUvhzgn5yCXgP0m8viChVReQKvVSEDfLcSa7rhw72M5K-334oMx2SwVIPY017zfvjTxV9YbR94xJ-YFRteoY_8GwdC1nz6oL1gpec9nS5_hGuT7q59XLnO8opUoo_qI6F6xhCIqL6tctTHNMxvsDyTCbZAoMZATvAhBrvLNu79KSicvRo5bJEEmIhVi_5AKJzLuDj1sIUJy9dzFhICYByW5y3iTsBFgKJriMzv2B7Nx2VxdXkNkba49BGXUXyGb9vd4odCjIJkOwtUcuvqrORuMzvH6ol9W3zdXt-kt9ffP56_rTdW0b0ZS6B2o4pZaOhiqLVa6ENJS2ynIKnZS9baAbQdFeNtIOtrEj71aCS9WN_WoUl9XHk--89BMMFsJxbz0nN5l00NE4_a8S3E5v415L3nLOFBq8ezBI8ecCuejJZQvemwBxyZpzKbhgousQpSfUpphzgvExhlF9PK7-_7g48vbv9R4H_lwTgfoEZLMFfReXFPC7njb8DelAsgY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273231366</pqid></control><display><type>article</type><title>Temporally separated feline calicivirus isolates do not cluster phylogenetically and are similarly neutralised by high-titre vaccine strain FCV-F9 antisera in vitro</title><source>MEDLINE</source><source>Sage Journals GOLD Open Access 2024</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Smith, Shirley L ; Afonso, Maria M ; Pinchbeck, Gina L ; Gaskell, Rosalind M ; Dawson, Susan ; Radford, Alan D</creator><creatorcontrib>Smith, Shirley L ; Afonso, Maria M ; Pinchbeck, Gina L ; Gaskell, Rosalind M ; Dawson, Susan ; Radford, Alan D</creatorcontrib><description>Objectives Feline calicivirus (FCV) is a highly variable and globally important feline pathogen for which vaccination has been the mainstay of control. Here, we test whether the continued use of FCV-F9, one of the most frequently used vaccine strains globally, is driving the emergence of vaccine-resistant viruses in the field. Methods This study made use of two representative panels of field isolates previously collected from cats visiting randomly selected veterinary practices across the UK as part of separate cross-sectional studies from 2001 and 2013/2014. Phylogenetic analysis and in vitro virus neutralisation tests were used to compare the genetic and antigenic relationships between these populations and FCV-F9. Results Phylogenetic analysis showed a typically radial distribution dominated by 52 distinct strains, with strains from both 2001 and 2013/2014 intermingled. The sequence for FCV-F9 appeared to be integral to this phylogeny and there were no significant differences in the genetic distances within each studied population (intra-population distances), or between them (inter-population distances), or between each population and FCV-F9. A 1 in 8 dilution neutralised 97% and 100% of the 2001 and 2013/14 isolates, respectively, and a 1 in 16 dilution neutralised 87% and 75% of isolates, respectively. There was no significant difference either in variance between the FCV-F9 neutralising titres for the two populations, or in the distribution of neutralisation titres across the two populations. Conclusions and relevance Although FCV is a highly variable virus, we found no evidence for a progressive divergence of field virus from vaccine strain FCV-F9, either phylogenetically or antigenically, with FCV-F9 antisera remaining broadly and equally cross-reactive to two geographically representative and temporally separated FCV populations. We suggest this may be because the immunodominant region of the FCV capsid responsible for neutralisation may have structural constraints preventing its longer term progressive antigenic evolution.</description><identifier>ISSN: 1098-612X</identifier><identifier>ISSN: 1532-2750</identifier><identifier>EISSN: 1532-2750</identifier><identifier>DOI: 10.1177/1098612X19866521</identifier><identifier>PMID: 31411533</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Animals ; Caliciviridae Infections - immunology ; Caliciviridae Infections - prevention &amp; control ; Caliciviridae Infections - veterinary ; Caliciviridae Infections - virology ; Calicivirus, Feline - classification ; Calicivirus, Feline - immunology ; Cat Diseases - immunology ; Cat Diseases - prevention &amp; control ; Cat Diseases - virology ; Cats ; Immune Sera - immunology ; Short Communications ; United Kingdom ; Vaccination - veterinary ; Viral Vaccines - immunology</subject><ispartof>Journal of feline medicine and surgery, 2020-06, Vol.22 (6), p.602-607</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019 2019 International Society of Feline Medicine and American Association of Feline Practitioners</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-be0a200c0fa09c0c07837a0059c20e677bc4e6fe90b747cdc4cf26832796fb8f3</citedby><cites>FETCH-LOGICAL-c434t-be0a200c0fa09c0c07837a0059c20e677bc4e6fe90b747cdc4cf26832796fb8f3</cites><orcidid>0000-0002-4590-1334 ; 0000-0003-1287-4277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7252219/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7252219/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,21966,27853,27924,27925,44945,45333,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31411533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Shirley L</creatorcontrib><creatorcontrib>Afonso, Maria M</creatorcontrib><creatorcontrib>Pinchbeck, Gina L</creatorcontrib><creatorcontrib>Gaskell, Rosalind M</creatorcontrib><creatorcontrib>Dawson, Susan</creatorcontrib><creatorcontrib>Radford, Alan D</creatorcontrib><title>Temporally separated feline calicivirus isolates do not cluster phylogenetically and are similarly neutralised by high-titre vaccine strain FCV-F9 antisera in vitro</title><title>Journal of feline medicine and surgery</title><addtitle>J Feline Med Surg</addtitle><description>Objectives Feline calicivirus (FCV) is a highly variable and globally important feline pathogen for which vaccination has been the mainstay of control. Here, we test whether the continued use of FCV-F9, one of the most frequently used vaccine strains globally, is driving the emergence of vaccine-resistant viruses in the field. Methods This study made use of two representative panels of field isolates previously collected from cats visiting randomly selected veterinary practices across the UK as part of separate cross-sectional studies from 2001 and 2013/2014. Phylogenetic analysis and in vitro virus neutralisation tests were used to compare the genetic and antigenic relationships between these populations and FCV-F9. Results Phylogenetic analysis showed a typically radial distribution dominated by 52 distinct strains, with strains from both 2001 and 2013/2014 intermingled. The sequence for FCV-F9 appeared to be integral to this phylogeny and there were no significant differences in the genetic distances within each studied population (intra-population distances), or between them (inter-population distances), or between each population and FCV-F9. A 1 in 8 dilution neutralised 97% and 100% of the 2001 and 2013/14 isolates, respectively, and a 1 in 16 dilution neutralised 87% and 75% of isolates, respectively. There was no significant difference either in variance between the FCV-F9 neutralising titres for the two populations, or in the distribution of neutralisation titres across the two populations. Conclusions and relevance Although FCV is a highly variable virus, we found no evidence for a progressive divergence of field virus from vaccine strain FCV-F9, either phylogenetically or antigenically, with FCV-F9 antisera remaining broadly and equally cross-reactive to two geographically representative and temporally separated FCV populations. We suggest this may be because the immunodominant region of the FCV capsid responsible for neutralisation may have structural constraints preventing its longer term progressive antigenic evolution.</description><subject>Animals</subject><subject>Caliciviridae Infections - immunology</subject><subject>Caliciviridae Infections - prevention &amp; control</subject><subject>Caliciviridae Infections - veterinary</subject><subject>Caliciviridae Infections - virology</subject><subject>Calicivirus, Feline - classification</subject><subject>Calicivirus, Feline - immunology</subject><subject>Cat Diseases - immunology</subject><subject>Cat Diseases - prevention &amp; control</subject><subject>Cat Diseases - virology</subject><subject>Cats</subject><subject>Immune Sera - immunology</subject><subject>Short Communications</subject><subject>United Kingdom</subject><subject>Vaccination - veterinary</subject><subject>Viral Vaccines - immunology</subject><issn>1098-612X</issn><issn>1532-2750</issn><issn>1532-2750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxSNERUvhzgn5yCXgP0m8viChVReQKvVSEDfLcSa7rhw72M5K-334oMx2SwVIPY017zfvjTxV9YbR94xJ-YFRteoY_8GwdC1nz6oL1gpec9nS5_hGuT7q59XLnO8opUoo_qI6F6xhCIqL6tctTHNMxvsDyTCbZAoMZATvAhBrvLNu79KSicvRo5bJEEmIhVi_5AKJzLuDj1sIUJy9dzFhICYByW5y3iTsBFgKJriMzv2B7Nx2VxdXkNkba49BGXUXyGb9vd4odCjIJkOwtUcuvqrORuMzvH6ol9W3zdXt-kt9ffP56_rTdW0b0ZS6B2o4pZaOhiqLVa6ENJS2ynIKnZS9baAbQdFeNtIOtrEj71aCS9WN_WoUl9XHk--89BMMFsJxbz0nN5l00NE4_a8S3E5v415L3nLOFBq8ezBI8ecCuejJZQvemwBxyZpzKbhgousQpSfUpphzgvExhlF9PK7-_7g48vbv9R4H_lwTgfoEZLMFfReXFPC7njb8DelAsgY</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Smith, Shirley L</creator><creator>Afonso, Maria M</creator><creator>Pinchbeck, Gina L</creator><creator>Gaskell, Rosalind M</creator><creator>Dawson, Susan</creator><creator>Radford, Alan D</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4590-1334</orcidid><orcidid>https://orcid.org/0000-0003-1287-4277</orcidid></search><sort><creationdate>20200601</creationdate><title>Temporally separated feline calicivirus isolates do not cluster phylogenetically and are similarly neutralised by high-titre vaccine strain FCV-F9 antisera in vitro</title><author>Smith, Shirley L ; Afonso, Maria M ; Pinchbeck, Gina L ; Gaskell, Rosalind M ; Dawson, Susan ; Radford, Alan D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-be0a200c0fa09c0c07837a0059c20e677bc4e6fe90b747cdc4cf26832796fb8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Caliciviridae Infections - immunology</topic><topic>Caliciviridae Infections - prevention &amp; control</topic><topic>Caliciviridae Infections - veterinary</topic><topic>Caliciviridae Infections - virology</topic><topic>Calicivirus, Feline - classification</topic><topic>Calicivirus, Feline - immunology</topic><topic>Cat Diseases - immunology</topic><topic>Cat Diseases - prevention &amp; control</topic><topic>Cat Diseases - virology</topic><topic>Cats</topic><topic>Immune Sera - immunology</topic><topic>Short Communications</topic><topic>United Kingdom</topic><topic>Vaccination - veterinary</topic><topic>Viral Vaccines - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Shirley L</creatorcontrib><creatorcontrib>Afonso, Maria M</creatorcontrib><creatorcontrib>Pinchbeck, Gina L</creatorcontrib><creatorcontrib>Gaskell, Rosalind M</creatorcontrib><creatorcontrib>Dawson, Susan</creatorcontrib><creatorcontrib>Radford, Alan D</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of feline medicine and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Shirley L</au><au>Afonso, Maria M</au><au>Pinchbeck, Gina L</au><au>Gaskell, Rosalind M</au><au>Dawson, Susan</au><au>Radford, Alan D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporally separated feline calicivirus isolates do not cluster phylogenetically and are similarly neutralised by high-titre vaccine strain FCV-F9 antisera in vitro</atitle><jtitle>Journal of feline medicine and surgery</jtitle><addtitle>J Feline Med Surg</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>22</volume><issue>6</issue><spage>602</spage><epage>607</epage><pages>602-607</pages><issn>1098-612X</issn><issn>1532-2750</issn><eissn>1532-2750</eissn><abstract>Objectives Feline calicivirus (FCV) is a highly variable and globally important feline pathogen for which vaccination has been the mainstay of control. Here, we test whether the continued use of FCV-F9, one of the most frequently used vaccine strains globally, is driving the emergence of vaccine-resistant viruses in the field. Methods This study made use of two representative panels of field isolates previously collected from cats visiting randomly selected veterinary practices across the UK as part of separate cross-sectional studies from 2001 and 2013/2014. Phylogenetic analysis and in vitro virus neutralisation tests were used to compare the genetic and antigenic relationships between these populations and FCV-F9. Results Phylogenetic analysis showed a typically radial distribution dominated by 52 distinct strains, with strains from both 2001 and 2013/2014 intermingled. The sequence for FCV-F9 appeared to be integral to this phylogeny and there were no significant differences in the genetic distances within each studied population (intra-population distances), or between them (inter-population distances), or between each population and FCV-F9. A 1 in 8 dilution neutralised 97% and 100% of the 2001 and 2013/14 isolates, respectively, and a 1 in 16 dilution neutralised 87% and 75% of isolates, respectively. There was no significant difference either in variance between the FCV-F9 neutralising titres for the two populations, or in the distribution of neutralisation titres across the two populations. Conclusions and relevance Although FCV is a highly variable virus, we found no evidence for a progressive divergence of field virus from vaccine strain FCV-F9, either phylogenetically or antigenically, with FCV-F9 antisera remaining broadly and equally cross-reactive to two geographically representative and temporally separated FCV populations. We suggest this may be because the immunodominant region of the FCV capsid responsible for neutralisation may have structural constraints preventing its longer term progressive antigenic evolution.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>31411533</pmid><doi>10.1177/1098612X19866521</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4590-1334</orcidid><orcidid>https://orcid.org/0000-0003-1287-4277</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-612X
ispartof Journal of feline medicine and surgery, 2020-06, Vol.22 (6), p.602-607
issn 1098-612X
1532-2750
1532-2750
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7252219
source MEDLINE; Sage Journals GOLD Open Access 2024; PubMed Central; Alma/SFX Local Collection
subjects Animals
Caliciviridae Infections - immunology
Caliciviridae Infections - prevention & control
Caliciviridae Infections - veterinary
Caliciviridae Infections - virology
Calicivirus, Feline - classification
Calicivirus, Feline - immunology
Cat Diseases - immunology
Cat Diseases - prevention & control
Cat Diseases - virology
Cats
Immune Sera - immunology
Short Communications
United Kingdom
Vaccination - veterinary
Viral Vaccines - immunology
title Temporally separated feline calicivirus isolates do not cluster phylogenetically and are similarly neutralised by high-titre vaccine strain FCV-F9 antisera in vitro
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporally%20separated%20feline%20calicivirus%20isolates%20do%20not%20cluster%20phylogenetically%20and%20are%20similarly%20neutralised%20by%20high-titre%20vaccine%20strain%20FCV-F9%20antisera%20in%20vitro&rft.jtitle=Journal%20of%20feline%20medicine%20and%20surgery&rft.au=Smith,%20Shirley%20L&rft.date=2020-06-01&rft.volume=22&rft.issue=6&rft.spage=602&rft.epage=607&rft.pages=602-607&rft.issn=1098-612X&rft.eissn=1532-2750&rft_id=info:doi/10.1177/1098612X19866521&rft_dat=%3Cproquest_pubme%3E2273231366%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273231366&rft_id=info:pmid/31411533&rft_sage_id=10.1177_1098612X19866521&rfr_iscdi=true